Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 2 de 2
Filtrer
1.
Article de Coréen | WPRIM | ID: wpr-51984

RÉSUMÉ

PURPOSE: Borage oil (BO) and safflower oil (SO) are efficacious in reversing epidermal hyperproliferation, which is caused by the disruption of epidermal barrier. In this study, we compared the antiproliferative effect of dietary BO and SO. Altered metabolism of ceramide (Cer), the major lipid of epidermal barrier, was further determined by measurement of epidermal levels of individual Cer, glucosylceramide (GlcCer), and sphingomyelin (SM) species, and protein expression of Cer metabolizing enzymes. METHODS: Epidermal hyperproliferation was induced in guinea pigs by a hydrogenated coconut diet (HCO) for 8 weeks. Subsequently, animals were fed diets of either BO (group HCO + BO) or SO (group HCO + SO) for 2 weeks. As controls, animals were fed BO (group BO) or HCO (group HCO) diets for 10 weeks. RESULTS: Epidermal hyperproliferation was reversed in groups HCO + BO (67.6% of group HCO) and HCO + SO (84.5% of group HCO). Epidermal levels of Cer1/2, GlcCer-A/B, and beta-glucocerebrosidase (GCase), an enzyme of GlcCer hydrolysis for Cer generation, were higher in group HCO + BO than in group HCO, and increased to levels similar to those of group BO. In addition, epidermal levels of SM1, serine palmitoyltransferase (SPT), and acidic sphingomyelinase (aSMase), enzymes of de novo Cer synthesis and SM hydrolysis for Cer generation, but not of Cer3-7, were higher in group HCO + BO than in group HCO. Despite an increase of SPT and aSMase in group HCO + SO to levels higher than in group HCO, epidermal levels of Cer1-7, GlcCer-A/B, and GCase were similar in these two groups. Notably, acidic ceramidase, an enzyme of Cer degradation, was highly expressed in group HCO + SO. Epidermal levels of GlcCer-C/D and SM-2/3 did not differ among groups. CONCLUSION: Dietary BO was more prominent for reversing epidermal hyperproliferation by enhancing Cer metabolism with increased levels of Cer1/2, GlcCer-A/B, and SM1 species, and of GCase proteins.


Sujet(s)
Animaux , Borago , Carthamus tinctorius , Ceramidases , Cocos , Régime alimentaire , Épiderme , Glucosylceramidase , Cochons d'Inde , Guinée , Hydrogène , Hydrolyse , Métabolisme , Huile de carthame , Serine C-palmitoyltransferase , Sphingomyeline phosphodiesterase
2.
Braz. j. microbiol ; Braz. j. microbiol;40(4): 747-756, Oct.-Dec. 2009. graf, tab
Article de Anglais | LILACS | ID: lil-528156

RÉSUMÉ

Gamma-linolenic acid (GLA, 18:3, cis- 6,9,12-octadecatrienoic acid), an important compound in n-6 eicosanoid family biosynthesis, occurs in the lipids of a few plant and microbial sources. This study focused on the screening of microbial strains with suitable lipase activity for enrichment of GLA by selective hydrolysis of the borage oil (21.6 percent of GLA/total fatty acids). Firstly, 352 microrganisms were tested for their lipolytic capacity using screening techniques on agar plates containing borage oil, strains were then selected and screened for their activity (U/mg) using both submerged fermentation (SmF) and solid state fermentation (SSF). The rate of hydrolysis and the selective preference of these hydrolytic enzymes towards fatty acids, with a special focus on enrichment of GLA were studied and compared with those obtained by two commercially-available lipases. Only one of the lipases tested during this study displayed selectivity, discriminating the GLA during the hydrolysis reaction. Using the enzymatic extract from Geotrichum candidum as a biocatalyst of the reaction, it was possible to obtain a percentage of 41.7 percent of GLA in acylglycerols fraction when the borage oil was treated in a fixed-bed reactor for 24 hours at 30ºC.


Sujet(s)
Acide gamma linolénique/analyse , Acide gamma linolénique/isolement et purification , Borago , Fermentation , Geotrichum/enzymologie , Geotrichum/isolement et purification , Techniques in vitro , Triacylglycerol lipase/analyse , Triacylglycerol lipase/isolement et purification , Catalyseur , Activation enzymatique , Hydrolyse , Méthodes , Méthodes
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE