Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 326
Filtre
1.
Hematol., Transfus. Cell Ther. (Impr.) ; 46(1): 58-66, Jan.-Mar. 2024. tab, graf
Article Dans Anglais | LILACS-Express | LILACS | ID: biblio-1557889

Résumé

Abstract Introduction Chimeric Antigen Receptor (CAR) T cells have tremendous potentials for cancer treatment; however, various challenges impede their universal use. These restrictions include the poor function of T cells in tumor microenvironments, the shortage of tumor-specific antigens and, finally, the high cost and time-consuming process, as well as the poor scalability of the method. Creative gene-editing tools have addressed each of these limitations and introduced next generation products for cell therapy. The clustered regularly interspaced short palindromic repeats-associated endonuclease 9 (CRISPR/Cas9) system has triggered a revolution in biology fields, as it has a great capacity for genetic manipulation. Method In this review, we considered the latest development of CRISPR/Cas9 methods for the chimeric antigen receptor T cell (CAR T)-based immunotherapy. Results The ability of the CRISPR/Cas9 system to generate the universal CAR T cells and also potent T cells that are persistent against exhaustion and inhibition was explored. Conclusion: We explained CRISPR delivery methods, as well as addressing safety concerns related to the use of the CRISPR/Cas9 system and their potential solutions.

2.
Acta Pharmaceutica Sinica B ; (6): 795-807, 2024.
Article Dans Anglais | WPRIM | ID: wpr-1011261

Résumé

Recent innovations in nanomaterials inspire abundant novel tumor-targeting CRISPR-based gene therapies. However, the therapeutic efficiency of traditional targeted nanotherapeutic strategies is limited by that the biomarkers vary in a spatiotemporal-dependent manner with tumor progression. Here, we propose a self-amplifying logic-gated gene editing strategy for gene/H2O2-mediated/starvation multimodal cancer therapy. In this approach, a hypoxia-degradable covalent-organic framework (COF) is synthesized to coat a-ZIF-8 in which glucose oxidase (GOx) and CRISPR system are packaged. To intensify intracellular redox dyshomeostasis, DNAzymes which can cleave catalase mRNA are loaded as well. When the nanosystem gets into the tumor, the weakly acidic and hypoxic microenvironment degrades the ZIF-8@COF to activate GOx, which amplifies intracellular H+ and hypoxia, accelerating the nanocarrier degradation to guarantee available CRISPR plasmid and GOx release in target cells. These tandem reactions deplete glucose and oxygen, leading to logic-gated-triggered gene editing as well as synergistic gene/H2O2-mediated/starvation therapy. Overall, this approach highlights the biocomputing-based CRISPR delivery and underscores the great potential of precise cancer therapy.

3.
Acta méd. costarric ; 65(3): 113-123, jul.-sep. 2023. tab, graf
Article Dans Espagnol | LILACS-Express | LILACS | ID: biblio-1556688

Résumé

Resumen El desarrollo de tecnologías para la edición del genoma ha abierto la posibilidad de apuntar directamente y modificar secuencias genómicas en casi todo tipo de células eucariotas. La edición del genoma ha ampliado nuestra capacidad para dilucidar la contribución de la genética a las enfermedades al promover la creación de modelos celulares y animales más precisos de procesos patológicos y ha comenzado a mostrar su potencial en una variedad de campos, que van desde la investigación básica hasta la biotecnología aplicada y biomédica. Entre estas tecnologías, el uso de las repeticiones palindrómicas cortas agrupadas regularmente espaciadas ha acelerado, en gran medida, el progreso de la edición de genes desde el concepto hasta la práctica clínica, generando, además, interés debido, no solo a su precisión y eficiencia, sino también a la rapidez y a los costos necesarios para su implementación en comparación con otras tecnologías de edición genómica. En esta revisión se presenta información recabada de publicaciones indexadas en la base de datos PubMed que se encontraron mediante el uso de palabras claves asociadas con la tecnología y que se filtraron para retener solo aquellas con evidencias de avances clínicamente relevantes y que permiten demostrar algunas de las aplicaciones que tiene esta tecnología en la investigación, pronóstico y tratamiento de enfermedades genéticas, cardiovasculares, virales, entre otras; esto con el objetivo de dar a conocer la situación actual de los avances en aplicaciones clínicas de la herramienta CRISPR-Cas y fomentar aún más la investigación en esta tecnología, la cual, tal como se evidencia a lo largo de esta revisión, posee una gran versatilidad y un amplio rango de aplicaciones, lo que ofrece una enorme oportunidad en el campo de la medicina genómica, pero que, a su vez, requiere un mayor fomento en su investigación para mejorar la tecnología y acercarla aún más a consolidar aplicaciones clínicas de uso seguro, confiable y consistente.


Abstract The development of genome editing technologies has opened up the possibility of directly targeting and modifying genomic sequences in almost all types of eukaryotic cells. Genome editing has expanded our ability to elucidate the contribution of genetics to disease by promoting the creation of more precise cellular and animal models of disease processes and has begun to show its potential in a variety of fields, ranging from basic research to applied and biomedical biotechnology. Among these technologies, the use of clustered regularly spaced short palindromic repeats have greatly accelerated the progress of gene editing from concept to clinical practice, further generating interest due not only to its precision and efficiency, but also to the speed and costs required for its implementation compared to other genomic editing methods. This review presents information collected from indexed publications in the PubMed database that were found by using keywords associated with the technology and filtered to retain only those with evidence of clinically relevant advances that demonstrate some of the applications that this technology has in research, prognosis, and treatment of genetic, cardiovascular, and viral diseases, among others; this with the aim of show the current situation of advances in clinical applications of the CRISPR-Cas tool and further encourage research in this technology, which, as evidenced throughout this review, has a great versatility and a wide range of applications, which offers an enormous opportunity in the field of genomic medicine but which, in turn, requires greater support in its research to improve the technology and bring it even closer to consolidating clinical applications of safe, reliable and consistent use.

4.
Braz. J. Psychiatry (São Paulo, 1999, Impr.) ; 45(2): 137-145, Mar.-Apr. 2023. graf
Article Dans Anglais | LILACS-Express | LILACS | ID: biblio-1439554

Résumé

Currently, genome editing technologies, such as clustered regularly interspaced short palindromic repeats (CRISPR/Cas9), are predominantly used to model genetic diseases. This genome editing system can correct point or frameshift mutations in risk genes. Here, we analyze and discuss the advantages of genome editing, its current applications, and the feasibility of the CRISPR/Cas9 system in research on psychiatric disorders. These disorders produce cognitive and behavioral alterations and their etiology is associated with polygenetic and environmental factors. CRISPR/Cas9 may reveal the biological mechanisms of psychiatric disorders at a basic research level, translating a suitable clinical approach for use in the diagnosis and treatment of psychiatric disorders. Genetic diagnosis and treatment for these disorders have not yet been fully established in psychiatry due to the limited understanding of their heterogeneity and polygenicity. We discuss the challenges and ethical issues in using CRISPR/Cas9 as a tool for diagnosis or gene therapy.

5.
Rev. invest. clín ; 75(1): 13-28, Jan.-Feb. 2023. graf
Article Dans Anglais | LILACS-Express | LILACS | ID: biblio-1450099

Résumé

ABSTRACT CRISPR/Cas genes evolved in prokaryotic organisms as a mechanism of defense designed to identify and destroy genetic material from threatening viruses. A breakthrough discovery is that CRISPR/Cas system can be used in eukaryotic cells to edit almost any desired gene. This comprehensive review addresses the most relevant work in the CRISPR/Cas field, including its history, molecular biology, gene editing capability, ongoing clinical trials, and bioethics. Although the science involved is complex, we intended to describe it in a concise manner that could be of interest to diverse readers, including anyone dedicated to the treatment of patients who could potentially benefit from gene editing, molecular biologists, and bioethicists. CRISPR/Cas has the potential to correct inherited diseases caused by single point mutations, to knock-in the promoter of a gene whose expression is highly desirable or knockout the gene coding for a deleterious protein. CRISPR/Cas technique can also be used to edit ex vivo immune cells and reinsert them in patients, improving their efficiency in attacking malignant cells, limiting the infectious potential of viruses or modulating xenotransplant rejection. Very important bioethical considerations on this topic include the need to internationally regulate its use by ad hoc expert committees and to limit its use until safety and bioethical issues are satisfactorily resolved.

6.
Braz. j. med. biol. res ; 56: e12854, 2023. tab, graf
Article Dans Anglais | LILACS-Express | LILACS | ID: biblio-1520474

Résumé

During the tumorigenic process, cancer cells may become overly dependent on the activity of backup cellular pathways for their survival, representing vulnerabilities that could be exploited as therapeutic targets. Certain molecular vulnerabilities manifest as a synthetic lethality relationship, and the identification and characterization of new synthetic lethal interactions may pave the way for the development of new therapeutic approaches for human cancer. Our goal was to investigate a possible synthetic lethal interaction between a member of the Chromodomain Helicase DNA binding proteins family (CHD4) and a member of the histone methyltransferases family (SETDB1) in the molecular context of a cell line (Hs578T) representing the triple negative breast cancer (TNBC), a subtype of breast cancer lacking validated molecular targets for treatment. Therefore, we employed the CRISPR-Cas9 gene editing tool to individually or simultaneously introduce indels in the genomic loci corresponding to the catalytic domains of SETDB1 and CHD4 in the Hs578T cell line. Our main findings included: a) introduction of indels in exon 22 of SETDB1 sensitized Hs578T to the action of the genotoxic chemotherapy doxorubicin; b) by sequentially introducing indels in exon 22 of SETDB1 and exon 23 of CHD4 and tracking the percentage of the remaining wild-type sequences in the mixed cell populations generated, we obtained evidence of the existence of a synthetic lethality interaction between these genes. Considering the lack of molecular targets in TNBC, our findings provided valuable insights for development of new therapeutic approaches not only for TNBC but also for other cancer types.

7.
Chinese Journal of Laboratory Medicine ; (12): 524-528, 2023.
Article Dans Chinois | WPRIM | ID: wpr-995759

Résumé

Herpes simplex virus (HSV) is a double-stranded DNA enveloped virus that causes severe effects on the human body by infecting the skin and nerve tissues. Because of latency and reactivation, the rapid detection and eradication of HSV are great challenges for clinical treatments. In recent years, clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated 9 (Cas9) system has developed rapidly in the field of gene editing and detection due to its simple design and high targeting efficiency.

8.
Chinese Journal of Ocular Fundus Diseases ; (6): 605-610, 2023.
Article Dans Chinois | WPRIM | ID: wpr-995673

Résumé

Inherited retinal diseases (IRDs) are the major cause of refractory blinding eye diseases, and gene replacement therapy has already made preliminary progress in the treatment of IRDs. For IRDs that cannot be treated by gene replacement therapy, gene editing provides an alternative therapeutic method. Strategies like disruption of pathogenic variants with or without gene augmentation therapy and precise repair of pathogenic variants can be applied for IRDs with various inheritance patterns and pathogenic variants. In animal models of retinitis pigmentosa, Usher syndrome, Leber congenital amaurosis, cone rod cell dystrophy, and other disorders, CRISPR/Cas9, base editing, and prime editing showed the potential to edit pathogenic variations in vivo, indicating a promising future for gene editing therapy of IRDs.

9.
Chinese Journal of Experimental Ophthalmology ; (12): 925-930, 2023.
Article Dans Chinois | WPRIM | ID: wpr-990931

Résumé

Several mutant genes for inherited retinal diseases have been identified, but effective treatments are still lacking.The clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein (Cas) system can edit human genomic DNA by nonhomologous end joining or homology-directed repair, offering more possibilities for the treatment of hereditary retinal diseases.CRISPR/Cas9 not only can genetically correct patient-derived induced pluripotent stem cells (iPSCs) to observe their differentiation into retinal cells thereby, thereby exploring the pathogenesis of the disease and implementing cell therapy, but can also be delivered to the body via vectors and directly act on target cells to achieve in vivo gene editing.CRISPR/Cas9 gene editing technology in hereditary retinal diseases has been mainly used in retinitis pigmentosa, hereditary X-linked juvenile retinoschisis, and Leber congenital amaurosis 10, of which the in vitro application of CRISPR/Cas9 for Leber congenital amaurosis 10 has entered the clinical trial stage.In this paper, we reviewed the mechanism and key advances of CRISPR/Cas9 and provided an overview of gene editing in IRDs.

10.
Protein & Cell ; (12): 874-887, 2023.
Article Dans Anglais | WPRIM | ID: wpr-1010762

Résumé

The clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9 system has been widely used for genome engineering and transcriptional regulation in many different organisms. Current CRISPR-activation (CRISPRa) platforms often require multiple components because of inefficient transcriptional activation. Here, we fused different phase-separation proteins to dCas9-VPR (dCas9-VP64-P65-RTA) and observed robust increases in transcriptional activation efficiency. Notably, human NUP98 (nucleoporin 98) and FUS (fused in sarcoma) IDR domains were best at enhancing dCas9-VPR activity, with dCas9-VPR-FUS IDR (VPRF) outperforming the other CRISPRa systems tested in this study in both activation efficiency and system simplicity. dCas9-VPRF overcomes the target strand bias and widens gRNA designing windows without affecting the off-target effect of dCas9-VPR. These findings demonstrate the feasibility of using phase-separation proteins to assist in the regulation of gene expression and support the broad appeal of the dCas9-VPRF system in basic and clinical applications.


Sujets)
Humains , Activation de la transcription , , Régulation de l'expression des gènes , Systèmes CRISPR-Cas/génétique
11.
Journal of Experimental Hematology ; (6): 1890-1893, 2023.
Article Dans Chinois | WPRIM | ID: wpr-1010055

Résumé

Hemophilia A(HA) is an X-linked recessive bleeding disorder caused by mutations in coagulation factor VIII. Nowadays, exogenous coagulation factor replacement therapy is the main treatment. With the continuous development of gene therapy, new research directions have been provided for the treatment of hemophilia A. CRISPR-Cas9 technology was applied to select suitable target sites, and mediate the targeted knock-in and efficient expression of exogenous B-domain-deleted FⅧ variant gene through corresponding vectors for the treatment of hemophilia A.CRISPR-Cas9 technology is an emerging gene editing tool with great efficiency, safety and effectiveness, and has been widely used in hemophilia gene therapy research. This paper reviews the vector selection, construction of therapeutic genes, gene editing technology and selection of expression target sites for hemophilia A gene therapy at this stage.


Sujets)
Humains , Hémophilie A/thérapie , Systèmes CRISPR-Cas , Hémophilie B/thérapie , Édition de gène , Thérapie génétique , Vecteurs génétiques
12.
China Tropical Medicine ; (12): 300-2023.
Article Dans Chinois | WPRIM | ID: wpr-979634

Résumé

@#Abstract: Objective To investigate the clustered regularly interspaced short palindromic repeats (CRISPR) genotypes and regional distribution of Yersinia pestis strains in the natural plague foci of Hainan Tibetan Autonomous Prefecture of Qinghai Province (referred to as "Hainan prefecture") and provide a scientific basis for plague prevention and control in this area. Methods A total of 36 representative Yersinia pestis strains, which were isolated from different host animals and insect vectors from 1954 to 2009 in Hainan Prefecture, were selected as experimental subjects. The DNAs were extracted using the traditional sodium dodecyl sulfate decomposition and phenol-chloroform method. Three pairs of CRISPR primers (YPa, Ypb, YPc) were used for PCR amplification, sequencing and analysis of the DNA of the tested strains, respectively, as a means to identify the CRISPR genotypes of Yersinia pestis in Hainan Prefecture. Results A total of 17 spacers were observed among 36 strains of Yersinia pestis, including 9 of YPa, 5 of YPb and 3 of YPc. All strains were divided into 5 CRISPR gene clusters (Cb2, Cb4 ', Ca7, Ca7 ', Ca35 ') and 6 genotypes (G1, G9, G22, G22-A1 ', G26-A1 ', G26-A1 'A4 -). The G26-a1 ' was the main genotype, which was distributed in Gonghe, Guide and Xinghai County, and the G22 is the second type, which was distributed in Gonghe and Guide County. Conclusions The genetic polymorphism of CRISPR loci of Yersinia pestis strains in Hainan was high, and the regional distribution characteristics of Yersinia pestis strains with different genotypes were significant.

13.
Chinese Journal of Biologicals ; (12): 400-2023.
Article Dans Chinois | WPRIM | ID: wpr-976169

Résumé

@#ObjectiveTo design and construct CRISPR/Cas9 gene editing system targeting Tsc1 and Tsc2 genes,and verify the effectiveness of gene editing at cellular level.MethodsThree sgRNA guide sequences were designed for mouse Tsc1 and Tsc2 genes respectively. The sgRNA expression vector was constructed and co-transfected with the Cas9 expression plasmid into mouse N2a cells. After the positive cells were obtained through drug screening,the DNA fragments at the targeting site were amplified by PCR,and the targeting efficiency was verified by TA clone sequencing.ResultsThe five targets of Tsc1-M-sgRNA2 and Tsc1-M-sgRNA3 of Tsc1 gene and Tsc2-M-sgRNA1,Tsc2-M-sgRNA2 and Tsc2-M-sgRNA3 of Tsc2 gene were all edited,and the editing efficiency was 40%,80%,30%,30% and 20%,respectively.ConclusionA CRISPR-Cas9 gene editing system with editing efficiency targeting mouse Tsc1 and Tsc2 genes was successfully constructed.

14.
Chinese Journal of Cancer Biotherapy ; (6): 373-379, 2023.
Article Dans Chinois | WPRIM | ID: wpr-974922

Résumé

@#[摘 要] 目的:基于CRISPR/Cas9基因编辑技术制备无内源TCR的TCR-T细胞并鉴定其在体外杀伤HPV16阳性宫颈癌SiHa细胞的功能。方法:培养健康志愿者外周血CD8+ T细胞和Jurkat细胞,CRISPR/Cas9基因编辑技术敲除CD8+ T、Jurkat细胞的TCR基因,制备过表达转基因TCR的重组慢病毒,在敲除内源性TCR的CD8+ T和Jurkat细胞中用慢病毒过表达转基因TCR制备TCR-T细胞,多色FCM检测TCR-T细胞中TCR和CD3的表达水平,荧光素酶活性实验检测TCR-T细胞对HPV16阳性SiHa细胞的杀伤效率。结果:CRIPSR/Cas9基因编辑技术高效地敲除了外周血CD8+ T细胞和Jurkat细胞中的TRAC和TRBC基因,敲除效率分别为(81.4±4.5)%、(98.5±0.07)%,制备的无内源TCR的TCR-T细胞高效表达转基因TCR,在外周血CD8+ T和Jurkat细胞中表达率为(66.0±17.8)%、(97.3±2.6)%,敲除内源TRAC和TRBC基因有效增强CD8+ T和Jurkat细胞膜表达转基因TCR(均P<0.01),敲除内源TCR增强TCR-T细胞特异性杀伤HPV16阳性的SiHa细胞[(71.4±1.0)% vs (35.1±2.0)%,P<0.01)]。结论:无内源TCR的TCR-T细胞显著增强转基因TCR的表达和对HPV16阳性宫颈癌SiHa细胞的靶向杀伤能力,为提高TCR-T细胞的临床疗效提供了实验依据。

15.
Chinese Journal of Biologicals ; (12): 145-150+157, 2023.
Article Dans Chinois | WPRIM | ID: wpr-965608

Résumé

@#Objective To knockout interferon alpha/beta receptor subunit 1(IFNAR1) gene in human colorectal adenocarcinoma cells Caco-2 using clustered regularly interspaced short palinmic repeats(CRISPR)/CRISPR-associated protein 9(Cas9)system to construct IFNAR1 knockout Caco-2 cell line.Methods The single guide RNA(sgRNA)sequence was designed to specifically recognize the exon region of IFNAR1 gene using CRISPR/Cas9 technology,and the LentiCRISPRv2-IFNAR1-sgRNA recombinant plasmid was constructed.Caco-2 cells were infected with the plasmid packaged by lentivirus and screened by puromycin resistance.The obtained monoclonal cell lines were cultured by limited dilution method,which were verified for the effect of IFNAR1 gene knockout by target gene sequencing and Western blot,and detected for the mRNA levels of CXC chemokine ligand 10(CXCL10)and interferon-stimulatd gene 20(ISG20)in IFNAR1knockout cells by adding exogenous IFNβ.Results Sequencing results of plasmid LentiCRISPRv2-IFNAR1-sgRNA showed that the insertion sites were all located at the sticky end of BsmBⅠenzyme digestion.Two IFNAR1 knockout monoclonal cell lines were obtained.The sequencing results showed that Caco-2-IFNAR1-KO1 had 5 bp deletion in the sixth exon of IFNAR1,and Caco-2-IFNAR1-KO2 had 18 bp deletion and 1 bp insertion in the seventh exon.Compared with wild-type Caco-2 cells,Caco-2-IFNAR1-KO1 and Caco-2-IFNAR1-KO2 cells showed no expression of IFNAR1 protein.Compared with no IFNβ stimulation,the mRNA levels of CXCL10 gene(t = 0.566 and 1.268 respectively,P>0.05)and ISG20 gene(t =1.522 and 1.733 respectively,P>0.05)in Caco-2-IFNAR1-KO1 and Caco-2-IFNAR1-KO2 cells stimulated by 50 ng/mL IFNβ showed no significant increase.While compared with those of wild-type Caco-2 cells,the mRNA levels of CXCL10gene(t = 6.763 and 6.777 respectively,P<0.05)and ISG20 gene(t = 5.664 and 5.65 respectively,P<0.05)in Caco-2-IFNAR1-KO1 and Caco-2-IFNAR1-KO2 cells decreased significantly under the stimulation of 50 ng/mL exogenous IFNβ.Conclusion Caco-2 cell line with IFNAR1 knockout was successfully constructed by using CRISPR/Cas9 technology,and the downstream molecules activated by IFNAR(interferon alpha/beta receptor)in this cell line were obviously inhibited,which provided a powerful tool for further exploration of the innate immune response and replication packaging mechanism of Caco-2 cells after virus infection.

16.
Chinese Journal of Schistosomiasis Control ; (6): 98-103, 2023.
Article Dans Chinois | WPRIM | ID: wpr-965536

Résumé

Rapid, sensitive and specific detection tools are critical for the prevention and control of infectious diseases. The in vitro nucleic acid amplification assays, including polymerase chain reaction and isothermal amplification technology, have been widely used for the detection of pathogens. Recently, nucleic acid detection-based on clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated proteins (Cas) have been developed, which are rapid, highly sensitive, highly specific, and portable. This review describes the classification and principle of CRISPR/Cas systems and their applications in pathogen detection, and discusses the prospects of CRISPR/Cas systems.

17.
Chinese Journal of Schistosomiasis Control ; (6): 38-43, 2023.
Article Dans Chinois | WPRIM | ID: wpr-965526

Résumé

Objective To establish a fluorescent assay for rapid detection of Plasmodium falciparum based on recombinaseaided amplification (RAA) and CRISPR-Cas12a system,and to preliminarily evaluate the diagnostic efficiency of this system.. Methods The 18S ribosomal RNA (rRNA) gene of P. falciparum was selected as the target sequence, and three pairs of RAA primers and CRISPR-derived RNA (crRNA) were designed and synthesized. The optimal combination of RAA primers and crRNA was screened and the reaction conditions of the system were optimized to create a fluorescent RAA/CRISPR-Cas12a system. The plasmid containing 18S rRNA gene of the P. falciparum strain 3D7 was generated, and diluted into concentrations of 1 000, 100, 10, 1 copy/μL for the fluorescent RAA/CRISPR-Cas12a assay, and its sensitivity was evaluated. The genomic DNA from P. vivax, P. malariae, P. ovum, hepatitis B virus, human immunodeficiency virus and Treponema pallidum was employed as templates for the fluorescent RAA/CRISPR-Cas12a assay, and its specificity was evaluated. Fifty malaria clinical samples were subjected to the fluorescent RAA/CRISPR-Cas12a assay and nested PCR assay, and the consistency between two assays was compared. In addition, P. falciparum strain 3D7 was cultured in vitro. Then, the culture was diluted into blood samples with parasite densities of 1 000, 500, 200, 50, 10 parasites/μL with healthy volunteers’ O-positive red blood cells for the RAA/CRISPR-Cas12a assay, and the detection efficiency was tested. Results The Pf-F3/Pf-R3/crRNA2 combination, 2.5 μL as the addition amount of B buffer, 40 min as the RAA reaction time, 37 °C as the reaction temperature of the CRISPR-Cas12a system were employed to establish the fluorescent RAA/CRISPR-Cas12a system. Such a system was effective to detect the plasmid containing 18S rRNA gene of the P. falciparum strain 3D7 at a concentration of 1 copy/μL, and presented fluorescent signals for detection of P. falciparum, but failed to detect P. ovum, P. malariae, P. vivax, T. pallidum, hepatitis B virus or human immunodeficiency virus. The fluorescent RAA/CRISPR-Cas12a system and nested PCR assay showed completely consistent results for detection of 50 malaria clinical samples (kappa = 1.0, P < 0.001). Following 6-day in vitro culture of the P. falciparum strain 3D7, 10 mL cultures were generated and the fluorescent RAA/CRISPR-Cas12a system showed the minimal detection limit of 50 parasites/μL. Conclusion The fluorescent RAA/CRISPR-Cas12a system is rapid, sensitive and specific for detection of P. falciparum, which shows promising value for rapid detection and risk monitoring of P. falciparum.

18.
Acta Pharmaceutica Sinica B ; (6): 2510-2543, 2023.
Article Dans Anglais | WPRIM | ID: wpr-982869

Résumé

CRISPR, as an emerging gene editing technology, has been widely used in multiple fields due to its convenient operation, less cost, high efficiency and precision. This robust and effective device has revolutionized the development of biomedical research at an unexpected speed in recent years. The development of intelligent and precise CRISPR delivery strategies in a controllable and safe manner is the prerequisite for translational clinical medicine in gene therapy field. In this review, the therapeutic application of CRISPR delivery and the translational potential of gene editing was firstly discussed. Critical obstacles for the delivery of CRISPR system in vivo and shortcomings of CRISPR system itself were also analyzed. Given that intelligent nanoparticles have demonstrated great potential on the delivery of CRISPR system, here we mainly focused on stimuli-responsive nanocarriers. We also summarized various strategies for CIRSPR-Cas9 system delivered by intelligent nanocarriers which would respond to different endogenous and exogenous signal stimulus. Moreover, new genome editors mediated by nanotherapeutic vectors for gene therapy were also discussed. Finally, we discussed future prospects of genome editing for existing nanocarriers in clinical settings.

19.
Journal of Southern Medical University ; (12): 527-536, 2023.
Article Dans Chinois | WPRIM | ID: wpr-986958

Résumé

OBJECTIVE@#To investigate the role of myosin heavy chain 9 (MYH9) in regulation of cell proliferation, apoptosis, and cisplatin sensitivity of non-small cell lung cancer (NSCLC).@*METHODS@#Six NSCLC cell lines (A549, H1299, H1975, SPCA1, H322, and H460) and a normal bronchial epithelial cell line (16HBE) were examined for MYH9 expression using Western blotting. Immunohistochemical staining was used to detect MYH9 expression in a tissue microarray containing 49 NSCLC and 43 adjacent tissue specimens. MYH9 knockout cell models were established in H1299 and H1975 cells using CRISPR/Cas9 technology, and the changes in cell proliferation cell were assessed using cell counting kit-8 (CCK8) and clone formation assays; Western blotting and flow cytometry were used to detect apoptosis of the cell models, and cisplatin sensitivity of the cells was evaluated using IC50 assay. The growth of tumor xenografts derived from NSCLC with or without MYH9 knockout was observed in nude mice.@*RESULTS@#MYH9 expression was significantly upregulated in NSCLC (P < 0.001), and the patients with high MYH9 expression had a significantly shorter survival time (P=0.023). In cultured NSCLC cells, MYH9 knockout obviously inhibited cell proliferation (P < 0.001), promoted cell apoptosis (P < 0.05), and increased their chemosensitivity of cisplatin. In the tumor-bearing mouse models, the NSCLC cells with MYH9 knockout showed a significantly lower growth rate (P < 0.05). Western blotting showed that MYH9 knockout inactivated the AKT/c- Myc axis (P < 0.05) to inhibit the expression of BCL2- like protein 1 (P < 0.05), promoted the expression of BH3- interacting domain death agonist and the apoptosis regulator BAX (P < 0.05), and activated apoptosis-related proteins caspase-3 and caspase-9 (P < 0.05).@*CONCLUSION@#High expression of MYH9 contributes to NSCLC progression by inhibiting cell apoptosis via activating the AKT/c-Myc axis.


Sujets)
Animaux , Humains , Souris , Apoptose , Carcinome pulmonaire non à petites cellules/métabolisme , Lignée cellulaire tumorale , Prolifération cellulaire , Cisplatine/pharmacologie , Protéines du cytosquelette/métabolisme , Tumeurs du poumon/métabolisme , Souris nude , Chaînes lourdes de myosine/métabolisme , Protéines proto-oncogènes c-akt/métabolisme , Transduction du signal
20.
Journal of Southern Medical University ; (12): 516-526, 2023.
Article Dans Chinois | WPRIM | ID: wpr-986957

Résumé

OBJECTIVE@#To establish a rapid detection and genotyping method for SARS-CoV-2 Omicron BA.4/5 variants using CRISPPR-Cas12a gene editing technology.@*METHODS@#We combined reverse transcription-polymerase chain reaction (RT-PCR) and CRISPR gene editing technology and designed a specific CRISPPR RNA (crRNA) with suboptimal protospacer adjacent motifs (PAM) for rapid detection and genotyping of SARS- CoV-2 Omicron BA.4/5 variants. The performance of this RT- PCR/ CRISPPR-Cas12a assay was evaluated using 43 clinical samples of patients infected by wild-type SARS-CoV-2 and the Alpha, Beta, Delta, Omicron BA. 1 and BA. 4/5 variants and 20 SARS- CoV- 2-negative clinical samples infected with 11 respiratory pathogens. With Sanger sequencing method as the gold standard, the specificity, sensitivity, concordance (Kappa) and area under the ROC curve (AUC) of RT-PCR/CRISPPR-Cas12a assay were calculated.@*RESULTS@#This assay was capable of rapid and specific detection of SARS- CoV-2 Omicron BA.4/5 variant within 30 min with the lowest detection limit of 10 copies/μL, and no cross-reaction was observed in SARS-CoV-2-negative clinical samples infected with 11 common respiratory pathogens. The two Omicron BA.4/5 specific crRNAs (crRNA-1 and crRNA-2) allowed the assay to accurately distinguish Omicron BA.4/5 from BA.1 sublineage and other major SARS-CoV-2 variants of concern. For detection of SARS-CoV-2 Omicron BA.4/5 variants, the sensitivity of the established assay using crRNA-1 and crRNA-2 was 97.83% and 100% with specificity of 100% and AUC of 0.998 and 1.000, respectively, and their concordance rate with Sanger sequencing method was 92.83% and 96.41%, respectively.@*CONCLUSION@#By combining RT-PCR and CRISPPR-Cas12a gene editing technology, we successfully developed a new method for rapid detection and identification of SARS-CoV-2 Omicron BA.4/5 variants with a high sensitivity, specificity and reproducibility, which allows rapid detection and genotyping of SARS- CoV-2 variants and monitoring of the emerging variants and their dissemination.


Sujets)
Humains , COVID-19 , Systèmes CRISPR-Cas , Génotype , Reproductibilité des résultats , RT-PCR , SARS-CoV-2/génétique , ARN , Dépistage de la COVID-19
SÉLECTION CITATIONS
Détails de la recherche