Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 2 de 2
Filtre
Ajouter des filtres








Gamme d'année
1.
Acta Pharmaceutica Sinica B ; (6): 2176-2187, 2023.
Article Dans Anglais | WPRIM | ID: wpr-982833

Résumé

Intelligent responsive drug delivery system opens up new avenues for realizing safer and more effective combination immunotherapy. Herein, a kind of tumor cascade-targeted responsive liposome (NLG919@Lip-pep1) is developed by conjugating polypeptide inhibitor of PD-1 signal pathway (AUNP-12), which is also a targeted peptide that conjugated with liposome carrier through matrix metalloproteinase-2 (MMP-2) cleavable peptide (GPLGVRGD). This targeted liposome is prepared through a mature preparation process, and indoleamine-2,3-dioxygenase (IDO) inhibitor NLG919 was encapsulated into it. Moreover, mediated by the enhanced permeability and retention effect (EPR effect) and AUNP-12, NLG919@Lip-pep1 first targets the cells that highly express PD-L1 in tumor tissues. At the same time, the over-expressed MMP-2 in the tumor site triggers the dissociation of AUNP-12, thus realizing the precise block of PD-1 signal pathway, and restoring the activity of T cells. The exposure of secondary targeting module II VRGDC-NLG919@Lip mediated tumor cells targeting, and further relieved the immunosuppressive microenvironment. Overall, this study offers a potentially appealing paradigm of a high efficiency, low toxicity, and simple intelligent responsive drug delivery system for targeted drug delivery in breast cancer, which can effectively rescue and activate the body's anti-tumor immune response and furthermore achieve effective treatment of metastatic breast cancer.

2.
Acta Pharmaceutica Sinica B ; (6): 1100-1125, 2022.
Article Dans Anglais | WPRIM | ID: wpr-929369

Résumé

Due to the special physiological and pathological characteristics of gliomas, most therapeutic drugs are prevented from entering the brain. To improve the poor prognosis of existing therapies, researchers have been continuously developing non-invasive methods to overcome barriers to gliomas therapy. Although these strategies can be used clinically to overcome the blood‒brain barrier (BBB), the accurate delivery of drugs to the glioma lesions cannot be ensured. Nano-drug delivery systems (NDDS) have been widely used for precise drug delivery. In recent years, researchers have gathered their wisdom to overcome barriers, so many well-designed NDDS have performed prominently in preclinical studies. These meticulous designs mainly include cascade passing through BBB and targeting to glioma lesions, drug release in response to the glioma microenvironment, biomimetic delivery systems based on endogenous cells/extracellular vesicles/protein, and carriers created according to the active ingredients of traditional Chinese medicines. We reviewed these well-designed NDDS in detail. Furthermore, we discussed the current ongoing and completed clinical trials of NDDS for gliomas therapy, and analyzed the challenges and trends faced by clinical translation of these well-designed NDDS.

SÉLECTION CITATIONS
Détails de la recherche