Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 1 de 1
Filtre
Ajouter des filtres








Gamme d'année
1.
Tissue Engineering and Regenerative Medicine ; (6): 639-647, 2018.
Article Dans Anglais | WPRIM | ID: wpr-717539

Résumé

BACKGROUND: The preservation of stem cell viability and characteristics during cell transport from the bench to patients can significantly affect the success of cell therapy. Factors such as suspending medium, time, temperature, cell density, and container type could be considered for transport conditions. METHODS: To establish optimal conditions, human amniotic fluid stem cells' (AFSCs) viabilities were analyzed under different media {DMEM(H), DMEM/F-12, K-SFM, RPMI 1640, α-MEM, DMEM(L), PBS or saline}, temperature (4, 22 or 37 ℃), cell density (1 × 10⁷ cells were suspended in 0.1, 0.5, 1.0 or 2.0 mL of medium) and container type (plastic syringe or glass bottle). After establishing the transport conditions, stem cell characteristics of AFSCs were compared to freshly prepared cells. RESULTS: Cells transported in DMEM(H) showed relatively higher viability than other media. The optimized transport temperature was 4 ℃, and available transport time was within 12 h. A lower cell density was associated with a better survival rate, and a syringe was selected as a transport container because of its clinical convenience. In compare of stem cell characteristics, the transported cells with established conditions showed similar potency as the freshly prepared cells. CONCLUSION: Our findings can provide a foundation to optimization of conditions for stem cell transport.


Sujets)
Femelle , Humains , Liquide amniotique , Numération cellulaire , Survie cellulaire , Thérapie cellulaire et tissulaire , Verre , Cellules souches , Taux de survie , Seringues
SÉLECTION CITATIONS
Détails de la recherche