Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 2 de 2
Filtre
Ajouter des filtres








Gamme d'année
1.
Int. j. high dilution res ; 21: 18-26, June 20, 2022.
Article Dans Anglais | LILACS, HomeoIndex | ID: biblio-1396375

Résumé

High dilutions (HD) of drugs used in homeopathy are mostly too dilute to contain original drug molecules. But evidences support their specific biological and therapeutic effects. The reason behind this is thought to be water structure characteristic of the original drug. Spectroscopic studies indicate that the specific water structure in HDs can be resolved into free water molecules, hydrogen bonding strength of water hydroxyl, number of hydrogen bonds and clathrate hydrate crystals (CHC). HDs are prepared in EtOH water solution by serial dilution and mechanical agitation, and are called potencies. The objective of the present study is to further confirm the presence of CHCs in the two potencies of three drugs. Electronic spectra of the HDs of the potencies indicate two broad peaks and marked difference in intensities of absorption. Furior Transform Infrared (FT-IR) spectra of the test potencies and their control show difference in intensity shift and contour shape of OH stretching and bending bands. All the experimental data indicate the presence of CHCs in varying amounts in the test potencies.


Sujets)
Remède Homéopathique , Hydrate de chloral , Spectrophotométrie UV , Électricité statique
2.
Journal of Pharmaceutical Analysis ; (6): 81-95, 2014.
Article Dans Chinois | WPRIM | ID: wpr-672132

Résumé

Investigation of charge-transfer (CT) complexes of drugs has been recognized as an important phenomenon in understanding of the drug-receptor binding mechanism. Structural, thermal, morpholo-gical and biological behavior of CT complexes formed between drug quinidine (Qui) as a donor and quinol (QL), picric acid (PA) or dichlorodicyanobenzoquinone (DDQ) as acceptors were reported. The newly synthesized CT complexes have been spectroscopically characterized via elemental analysis;infrared (IR), Raman, 1H NMR and electronic absorption spectroscopy; powder X-ray diffraction (PXRD);thermogravimetric (TG) analysis and scanning electron microscopy (SEM). It was found that the obtained complexes are nanoscale, semi-crystalline particles, thermally stable and spontaneous. The molecular composition of the obtained complexes was determined using spectrophotometric titration method and was found to be 1:1 ratios (donor:acceptor). Finally, the biological activities of the obtained CT complexes were tested for their antibacterial activities. The results obtained herein are satisfactory for estimation of drug Qui in the pharmaceutical form.

SÉLECTION CITATIONS
Détails de la recherche