Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 626
Filtre
1.
China Pharmacy ; (12): 316-321, 2024.
Article Dans Chinois | WPRIM | ID: wpr-1006616

Résumé

OBJECTIVE To analyze the chemical constituents and components absorbed into plasma of the extract of Ardisia crenata and to elucidate its possible pharmacodynamic material basis. METHODS Overall, 12 rats were randomly assigned to the blank group (n=6) and A. crenata group (n=6) by the paired comparison method. The drug was administered once daily in the morning and afternoon for three days. Serum samples were prepared from serum after redosing on 4th day. The UPLC-QE-HF-MS/ MS was used to analyze and identify the chemical constituents in A. crenata extract and serum samples. Compound Discoverer 3.0 was employed for retention time correction, peak identification, and peak extraction. According to the secondary mass spectrometry information, the Thermo mzCloud online and Thermo mzVault local databases, referring to the relevant literature and control quality spectrum information were used to preliminarily identify the chemical constituents and components absorbed into plasma of A. crenata. RESULTS A total of 34 compounds were identified from the extract of A. crenata, mainly coumarins, flavonoids, organic acids, amino acids, including bergenin, quercetin, gallic acid, L-pyroglutamic acid, etc. Besides, 5 components absorbed into plasma were identified from serum samples: L-pyroglutamic acid, syringic acid, bergenin, cinnabar root saponin A, and mycophenolic acid. CONCLUSIONS L-pyroglutamic acid, syringic acid, bergenin, cinnabar root saponin A, and mycophenolic acid may act as the pharmacodynamic material basis of A. crenata.

2.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 190-202, 2024.
Article Dans Chinois | WPRIM | ID: wpr-1003424

Résumé

Eucommia ulmoides, a plant belonging to Eucommiaceae, has a history of medical use for over two thousand years in China. The dried bark and leaves of this plant are usually used as medicinal materials. Due to the high safety in clinical application, E. ulmoides leaves were officially recognized for both medicinal and edible use by the food safety evaluation in 2019, providing a valuable resource for the development of food and health products. According to the traditional Chinese medicine theory, E. ulmoides has the effects of nourishing the liver and kidneys, strengthening sinews and bones, and calming fetus. Modern research has shown that different parts such as the bark, leaves, flowers, and seeds of E. ulmoides contain similar chemical components, including phenylpropanoids, terpenoids, flavonoids, phenolic acids, steroids, and polysaccharides. E. ulmoides exhibits diverse pharmacological activities such as lowering blood pressure and blood lipid and glucose levels, preventing osteoporosis and possesses anti-tumor, anti-bacterial, antiviral, anti-inflammatory, antioxidant, and hepatoprotective effects. Therefore, it holds great potential for the development of products with both medicinal and edible values. This review systematically summarizes the chemical constituents, pharmacological activities, and representative medicinal and edible products of different parts of E. ulmoides. It is expected to provide theoretical references for the clinical application of E. ulmoides and its active components and the development and utilization of the products with both medicinal and edible values. This review contributes to a deeper understanding of the medicinal properties of E. ulmoides and provides guidance for further exploration of its applications in the healthcare field. As a plant with both medicinal and edible values, E. ulmoides is expected to attract more attention in future research and contribute to human health.

3.
China Journal of Chinese Materia Medica ; (24): 6676-6681, 2023.
Article Dans Chinois | WPRIM | ID: wpr-1008865

Résumé

Nine compounds were isolated from the 90% ethanol extract of Salacia polysperma by silica gel, Sephadex LH-20 column chromatography, together with preparative HPLC methods. Based on HR-ESI-MS, MS, 1D and 2D NMR spectral analyses, the structures of the nine compounds were identified as 28-hydroxy wilforlide B(1), wilforlide A(2), 1β,3β-dihydroxyurs-9(11),12-diene(3),(-)-epicatechin(4),(+)-catechin(5),(-)-4'-O-methyl-ent-galloepicatechin(6), 3-hydroxy-1-(4-hydroxy-3-methoxy-phenyl)propan-1-one(7),(-)-(7S,8R)-4-hydroxy-3,3',5'-trimethoxy-8',9'-dinor-8,4'-oxyneoligna-7,9-diol-7'-aldehyde(8), and vanillic acid(9). Compound 1 is a new oleanane-type triterpene lactone. Compounds 1, 3, 4, 7-9 were isolated from the Salacia genus for the first time. All compounds were assayed for their α-glucosidase inhibitory activity. The results suggested that compound 8 exhibited moderate α-glucosidase inhibitory activity, with an IC_(50) value of 37.2 μmol·L~(-1), and the other compounds showed no α-glucosidase inhibitory activity.


Sujets)
Salacia/composition chimique , alpha-Glucosidase , Triterpènes/pharmacologie , Spectroscopie par résonance magnétique , Éthanol , Structure moléculaire
4.
China Journal of Chinese Materia Medica ; (24): 6408-6413, 2023.
Article Dans Chinois | WPRIM | ID: wpr-1008840

Résumé

The chemical constituents of Helleborus thibetanus were isolated and purified by silica gel column chromatography, Sephadex LH-20 gel column chromatography, and semi-preparative RP-HPLC, and the structures of all compounds were identified by modern spectrographic technology(MS, NMR). The MTT method was used to measure the cytotoxicity of compounds 1-8. Twelve compounds were isolated from the roots and rhizomes of H. thibetanus and were identified as(25R)-22β,25-expoxy-26-[(O-β-D-glucopyranosyl)oxy]-1β,3β-dihydroxyfurosta-5-en(1), β-sitosterol myristate(2), β-sitosterol lactate(3), β-sitosterol 3-O-β-D-glucopyrannoside(4), 4,6,8-trihydroxy-3,4-dihydronaphthalen-1(2H)-one(5), 1,3,5-trimethoxybenzene(6), 7,8-dimethylbenzo pteridine-2,4(1H,3H)-dione(7), 1H-indole-3-carboxylic acid(8), p-hydroxy cinnamic acid(9), lauric acid(10), n-butyl α-L-arabinofuranoside(11) and methyl-α-D-fructofuranoside(12), respectively. Among them, compound 1 is a new compound and named thibetanoside L; compounds 2, 5-8, 11 are first isolated from the family Ranunculaceae; compound 12 is isolated from the genus Helleborus for the first time. The results of MTT assay showed that the IC_(50) values of compounds 1-8 against HepG2 and HCT116 cells were greater than 100 μmol·L~(-1).


Sujets)
Helleborus/composition chimique , Structure moléculaire , Racines de plante/composition chimique , Rhizome/composition chimique , Spectroscopie par résonance magnétique
5.
China Journal of Chinese Materia Medica ; (24): 6088-6092, 2023.
Article Dans Chinois | WPRIM | ID: wpr-1008808

Résumé

To study the chemical constituents in the non-alkaloid part of stems of Dendrobium nobile. The macroporous adsorption resin, MCI, silica gel, RP-C_(18), and Sephadex LH-20 gel, preparative thin layer chromatography, and preparative high-performance liquid chromatography(HPLC) were used to isolate and purify the compounds. The structures of the compound were determined according to the spectra data, physicochemical properties, and relevant references. A total of 8 compounds were isolated from D. nobile, which were soltorvum F(1), p-hydroxyphenylpropionic acid(2), vanillic acid(3), p-hydroxybenzoic acid(4), N-trans-cinnamic acid acyl-p-hydroxybenzene ethylamine(5),(+)-(1R,2S,3R,4S,5R,6S,9R)-2,11,12-trihydroxypicrotoxane-3(15)-lactone(6), dendronobilin H(7), soltorvum E(8). Compound 1 was a novel compound, named as soltorvum F. Compound 8 was isolated from Dendrobium species for the first time.


Sujets)
Dendrobium/composition chimique , Structure moléculaire , Sesquiterpènes de type guaïane , Sesquiterpènes/composition chimique
6.
China Journal of Chinese Materia Medica ; (24): 5809-5816, 2023.
Article Dans Chinois | WPRIM | ID: wpr-1008778

Résumé

Six compounds were isolated from aqueous extract of wine-processed Corni Fructus through silica gel, ODS column chromatography, Sephadex LH-20 gel column chromatography, reverse phase preparative HPLC and other chromatographic separation technologies. Their structures were identified with multiple spectroscopical methods including HR-ESI-MS, UV, IR, NMR and ECD and so on. Their structures were established as pinoresinoside B(1), cornusgallicacid A(2),(+)-isolariciresinol-9'-O-β-glucopyranoside(3),(-)-isolariciresinol 3α-O-β-D-glucopyranoside(4),(7R,8S)-dihydrodehydrodiconiferyl alcohol 9-O-β-D-glucopyranoside(5), and(-)-seco isolariciresinol-9'-O-β-D-glucopyranoside(6). Among them, compounds 1 and 2 were two new compounds. The biological activity evaluation results showed that compounds 2 and 6 had strong DPPH free radical scavenging ability, with EC_(50) values of(4.18±1.96) and(21.45±1.19) μmol·L~(-1), respectively. Compounds 1 and 2 had protective effects on H_2O_2-induced oxidative damage in NRK-52E cells in a dose-dependent manner, and the cell survival rate of compound 2 at 100 μmol·L~(-1) was 96.09%±1.77%.


Sujets)
Cornus , Vin , Naphtols , Lignine
7.
China Journal of Chinese Materia Medica ; (24): 5419-5437, 2023.
Article Dans Chinois | WPRIM | ID: wpr-1008740

Résumé

Curcuma wenyujin, as one of the eight Daodi-herbs in Zhejiang province, is widely used. It has the effects of eliminating stasis and dissipating mass, moving Qi and activating blood, and clearing heart and relieving depression. Modern studies have shown that it has anti-tumor, anti-inflammatory, anti-oxidation, anti-thrombus and liver-protecting effects and mainly contains sesquiterpenoids, monoterpenoids, diterpenoids, and curcumins. This paper reviews the research progress in the chemical constituents and pharmacological effects of C. wenyujin in the last decade, discusses the modern clinical applications combined with the traditional efficacy, and predicts its quality markers(Q-markers) from plant consanguinity, medicinal properties, efficacy, processing and measurability of chemical components based on the theory of Q-markers, so as to provide a reference for the establishment of a scientific quality evaluation system and the research and application of this herb in the future.


Sujets)
Anti-inflammatoires , Curcuma/composition chimique , Foie
8.
China Journal of Chinese Materia Medica ; (24): 5216-5234, 2023.
Article Dans Chinois | WPRIM | ID: wpr-1008719

Résumé

The chemical constituents of Chuanzhi Tongluo Capsules were analyzed and identified using ultra-high performance liquid chromatography-quadrupole/electrostatic field orbitrap high-resolution mass spectrometry(UPLC-Q-Exactive Orbitrap-MS) to clarify the pharmacological substance basis. In addition, network pharmacology was employed to explore the mechanism of Chuanzhi Tongluo Capsules in the treatment of cerebral infarction. Gradient elution was performed using acetonitrile and 1% acetic acid in water as the mobile phase. Mass spectrometry was performed in positive and negative ion modes. Xcalibur 4.2 software was used for compound analysis, including accurate mass-to-charge ratio and MS/MS fragment information, combined with the comparison of reference standards and literature data. A total of 152 compounds were identified, including 32 organic acids, 35 flavonoids and their glycosides, 33 diterpenes, 13 phthalides, 12 triterpenes and triterpene saponins, 23 nitrogen-containing compounds, and 4 other compounds, and their fragmentation patterns were analyzed. SwissTargetPrediction, GeneCards, DAVID, and other databases were used to predict and analyze the core targets and mechanism of Chuanzhi Tongluo Capsules. Protein-protein interaction(PPI) network topology analysis identified 10 core targets, including TNF, VEGFA, EGFR, IL1B, and CTNNB1. KEGG enrichment analysis showed that Chuanzhi Tongluo Capsules mainly exerted their effects through the regulation of lipid and atherosclerosis, glycoproteins in cancer, MicroRNAs in cancer, fluid shear stress, and atherosclerosis-related pathways. Molecular docking was performed between the key constituents and core targets, and the results demonstrated a strong binding affinity between the key constituents of Chuanzhi Tongluo Capsules and the core targets. This study comprehensively elucidated the chemical constituents of Chuanzhi Tongluo Capsules and explored the core targets and mechanism in the treatment of cerebral infarction based on network pharmacology, providing a scientific reference for the study of the pharmacological substance basis and formulation quality standards of Chuanzhi Tongluo Capsules.


Sujets)
Humains , Spectrométrie de masse en tandem/méthodes , Chromatographie en phase liquide à haute performance/méthodes , Simulation de docking moléculaire , Pharmacologie des réseaux , Médicaments issus de plantes chinoises/pharmacologie , Capsules , Athérosclérose , Infarctus cérébral , Tumeurs
9.
China Journal of Chinese Materia Medica ; (24): 4413-4420, 2023.
Article Dans Chinois | WPRIM | ID: wpr-1008695

Résumé

The present study investigated the chemical constituents from the aerial parts of Glycyrrhiza uralensis. The ethanol extract of the aerial parts of G. uralensis was separated and purified by different column chromatographies such as macroporous resin, silica gel, and Sephadex LH-20, and through preparative HPLC and recrystallization. Thirteen compounds were isolated and identified as(2S)-6-[(Z)-3-hydroxymethyl-2-butenyl]-5,7,3'-trihydroxy-4'-methoxy-dihydroflavanone(1),(2S)-8-[(E)-3-hydroxymethyl-2-butenyl]-5,7,3',5'-tetrahydroxy-dihydroflavanone(2), α,α'-dihydro-5,4'-dihydroxy-3-acetoxy-2-isopentenylstilbene(3), 6-prenylquercetin(4), 6-prenylquercetin-3-methyl ether(5), formononetin(6), 3,3'-dimethylquercetin(7), chrysoeriol(8), diosmetin(9),(10E,12Z,14E)-9,16-dioxooctadec-10,12,14-trienoic acid(10), 5,7,3',4'-tetrahydroxy-6-prenyl-dihydroflavanone(11), naringenin(12), dibutylphthalate(13). Compounds 1-3 are new compounds, and compounds 10 and 13 are isolated from aerial parts of this plant for the first time.


Sujets)
Glycyrrhiza uralensis/composition chimique , Parties aériennes de plante/composition chimique
10.
China Journal of Chinese Materia Medica ; (24): 5024-5031, 2023.
Article Dans Chinois | WPRIM | ID: wpr-1008672

Résumé

Chemical constituents were isolated and purified from ethyl acetate fraction of Arctium lappa leaves by silica gel, ODS, MCI, and Sephadex LH-20 column chromatography. Their structures were identified with multiple spectroscopical methods including NMR, MS, IR, UV, and X-ray diffraction combined with literature data. Twenty compounds(1-20) were identified and their structures were determined as arctanol(1), citroside A(2), melitensin 15-O-β-D-glucoside(3), 11β,13-dihydroonopordopicrin(4), 11β,13-dihydrosalonitenolide(5), 8α-hydroxy-β-eudesmol(6), syringin(7), dihydrosyringin(8), 3,4,3',4'-tetrahydroxy-δ-truxinate(9),(+)-pinoresinol(10), phillygenin(11), syringaresinol(12), kaeperferol(13), quercetin(14), luteolin(15), hyperin(16), 4,5-O-dicaffeoylquinic acid(17), 1H-indole-3-carboxaldehyde(18), benzyl-β-D-glucopyranoside(19), and N-(2'-phenylethyl) isobutyramide(20). Among them, compound 1 is a new norsesquiterpenoid, and compounds 2-5, 7-8, and 18-20 are isolated from this plant for the first time.


Sujets)
Arctium/composition chimique , Spectroscopie par résonance magnétique , Lutéoline/analyse , Feuilles de plante/composition chimique
11.
China Journal of Chinese Materia Medica ; (24): 5014-5023, 2023.
Article Dans Chinois | WPRIM | ID: wpr-1008671

Résumé

The chemical constituents from the stems and leaves of Cratoxylum cochinchinense were isolated and purified using silica gel, ODS gel, and Sephadex LH-20 gel column chromatography, as well as preparative HPLC. The chemical structures of all isolated compounds were identified on the basis of their physicochemical properties, spectroscopic analyses, and the comparison of their physicochemical and spectroscopic data with the reported data in literature. As a result, 21 compounds were isolated from the 90% ethanol extract of the stems and leaves of C. cochinchinense, which were identified as cratocochine(1), 1-hydroxy-3,7-dimethoxyxanthone(2), 1-hydroxy-5,6,7-trimethoxyxanthone(3), ferrxanthone(4), 3,6-dihydroxy-1,5-dimethoxyxanthone(5), 3,6-dihydroxy-1,7-dimethoxyxanthone(6), 1,2,5-trihydroxy-6,8-dimethoxyxanthone(7), securixanthone G(8), gentisein(9), 3,7-dihydroxy-1-methoxyxanthone(10), pancixanthone B(11), garcimangosxanthone A(12), pruniflorone L(13), 9-hydroxy alabaxanthone(14), cochinchinone A(15), luteolin(16), 3,5'-dimethoxy-4',7-epoxy-8,3'-neolignane-5,9,9'-triol(17), N-benzyl-9-oxo-10E,12E-octadecadienamide(18), 15-hydroxy-7,13E-labdadiene(19), stigmasta-4,22-dien-3-one(20), and stigmast-5-en-3β-ol(21). Among these isolates, compound 1 was a new xanthone, compounds 2-5, 7, 8, 12, and 16-21 were isolated from the Cratoxylum plant for the first time, and compounds 11 and 13 were obtained from C. cochinchinense for the first time. Furthermore, all isolated compounds 1-21 were appraised for their anti-rheumatoid arthritis activities by MTS method through measuring their anti-proliferative effect on synoviocytes in vitro. As a result, xanthones 1-15 displayed notable anti-rheumatoid arthritis activities, which showed inhibitory effects on the proliferation of MH7A synoviocytes with the IC_(50) values ranging from(8.98±0.12) to(228.68±0.32) μmol·L~(-1).


Sujets)
Cellules synoviales , Clusiaceae/composition chimique , Xanthones/analyse , Feuilles de plante/composition chimique , Prolifération cellulaire , Arthrite
12.
China Journal of Chinese Materia Medica ; (24): 4919-4941, 2023.
Article Dans Chinois | WPRIM | ID: wpr-1008662

Résumé

Halogenated sesquiterpenes are important derivatives of sesquiterpenes, referring to chemical components of sesquiterpenes that contain halogens such as chlorine, bromine, and iodine. Halogenated sesquiterpenes have attracted attention from researchers in China and abroad because of their diverse structures, unique halogen elements, and extensive pharmacological activities. Studies have shown that halogenated sesquiterpenes exhibit significant antimicrobial, anti-inflammatory, anticancer, insecticidal, hypoglycemic, and enzyme inhibitory activities. In order to better explore the potential pharmaceutical value of halogenated sesquiterpenes, this paper reviewed the structural characteristics and pharmacological activities of halogenated sesquiterpenes in the past two decades, aiming to provide references for further research and development of this class of compounds.


Sujets)
Sesquiterpènes/composition chimique , Anti-inflammatoires/pharmacologie , Chine
13.
China Journal of Chinese Materia Medica ; (24): 4686-4692, 2023.
Article Dans Chinois | WPRIM | ID: wpr-1008635

Résumé

The chemical constituents of the seeds of Moringa oleifera were isolated and purified by using Sephadex LH-20, Toyo-pearl HW-40F, silica gel, ODS, and MCI column chromatography. The structures of compounds were identified by high-resolution mass spectrometry, ~1H-NMR, ~(13)C-NMR, HMQC, HMBC, and ~1H-~1H COSY, as well as physicochemical properties of compounds and literature data. Twelve compounds were isolated from 30% ethanol fraction of the seeds of M. oleifera and identified as ethyl-4-O-α-L-rhamnosyl-α-L-rhamnoside(1), ethyl-3-O-α-L-rhamnosyl-α-L-rhamnoside(2),(4-hydroxybenzyl)ethyl carbamate(3),(4-aminophenyl)acetic acid(4), ethyl-α-L-rhamnoside(5), methyl-α-L-rhamnoside(6), moringapyranosyl(7), 2-[4-(α-L-rhamnosyl)phenyl]methyl acetate(8), niaziridin(9), 5-hydroxymethyl furfural(10), 4-hydroxybenzeneacetamide(11), and 4-hydroxybenzoic acid(12). Among them, compounds 1 and 2 are two new compounds, compound 3 is a new natural product, and compounds 4-5 were yielded from Moringa plant for the first time. All compounds were evaluated for α-glucosidase inhibitory activity in vitro. Compound 10 showed excellent inhibitory activity with IC_(50) of 210 μg·mL~(-1).


Sujets)
Moringa oleifera/composition chimique , alpha-Glucosidase , Moringa , Graines , Extraits de plantes/pharmacologie
14.
China Journal of Chinese Materia Medica ; (24): 4130-4136, 2023.
Article Dans Chinois | WPRIM | ID: wpr-1008609

Résumé

Twelve compounds were isolated from Liquidambaris Resina by silica gel column chromatography and thin layer chromatography. Their structures were identified on the basis of spectral data, electron capture detector data, and physicochemical properties as(2'R, 3'R)-2',3'-dihydroxy-hydrocinnamyl-(E)-cinnamate(1),(E)-cinnamyl-(E)-cinnamate(2), cinnamic acid(3), 28-norlup-20(29)-en-3-one-17β-hydroperoxide(4), erythrodiol(5), 13β,28-epoxy-30-hydroxyolean-1-en-3-one(6),(3β)-olean-12-ene-3,23-diol(7), 2α,3α-dihydroxy-olean-12-en-28-oic acid(8), 28-hydroxyolean-12-en-3-one(9), 3-epi-oleanolic acid(10), 3-oxo-oleanolic acid(11), and hederagenin(12). Compound 1 was a new cinnamic acid ester derivative and compounds 2-4,6-8, and 12 were isolated from Liquidambaris Resina for the first time. Compounds 4, 5, 10, and 12 exerted inhibitory effects on the proliferation of human umbilical vein endothelial cells(HUVEC) with the IC_(50) values of(17.43±2.17),(35.32±0.61),(27.50±0.80), and(46.30±0.30) μmol·L~(-1), respectively.


Sujets)
Humains , Acide oléanolique , Cellules endothéliales , Esters , Cinnamates , Triterpènes/composition chimique , Structure moléculaire
15.
China Journal of Chinese Materia Medica ; (24): 4124-4129, 2023.
Article Dans Chinois | WPRIM | ID: wpr-1008608

Résumé

Three new cucurbitane-type triterpenoid glycosides were separated from the ethyl acetate extract of Citrullus colocynthis by a variety of chromatographic techniques. According to the data of NMR, HR-ESI-MS, and/or comparison with the reported data, the three novel cucurbitane-type triterpenoid glycosides were identified as colocynthenin E(1), colocynthenin G(2), and colocynthenin H(3). The cell inflammation model was established with RAW264.7 macrophages exposed to lipopolysaccharide and then used to determine the anti-inflammatory activities of the three compounds. Compounds 2 and 3 showed mild anti-inflammatory activities with the IC_(50) of 48.21 and 40.11 μmol·L~(-1), respectively, compared with that(IC_(50)=7.57 μmol·L~(-1)) of the positive control dexamethasone.


Sujets)
Citrullus colocynthis/composition chimique , Triterpènes/composition chimique , Hétérosides/composition chimique , Extraits de plantes/composition chimique , Anti-inflammatoires/pharmacologie
16.
China Journal of Chinese Materia Medica ; (24): 1553-1557, 2023.
Article Dans Chinois | WPRIM | ID: wpr-970627

Résumé

Two prenylated 2-arylbenzofurans were isolated from roots of Artocarpus heterophyllus, with a combination of various chromatographic approaches, including ODS, MCI, Sephadex LH-20, and semipreparative high performance liquid chromatography(HPLC). They were identified as 5-[6-hydroxy-4-methoxy-5,7-bis(3-methylbut-2-enyl)benzofuran-2-yl]-1,3-benzenediol(1) and 5-[2H,9H-2,2,9,9-tetramethyl-furo[2,3-f]pyrano[2,3-h][1]benzopyran-6-yl]-1,3-benzenediol(2) with spectroscopic methods, such as HR-ESI-MS, IR, 1D NMR, and 2D NMR, and named artoheterins B(1) and C(2), respectively. The anti-respiratory burst activities of the two compounds were evaluated with rat polymorphonuclear neutrophils(PMNs) stimulated by phorbol 12-myristate 13-acetate(PMA). The results showed that 1 and 2 exhibited significant inhibitory effect on respiratory burst of PMNs with IC_(50) values of 0.27 and 1.53 μmol·L~(-1), respectively.


Sujets)
Rats , Animaux , Structure moléculaire , Artocarpus/composition chimique , Extraits de plantes/pharmacologie , Spectroscopie par résonance magnétique , Racines de plante/composition chimique
17.
China Journal of Chinese Materia Medica ; (24): 861-878, 2023.
Article Dans Chinois | WPRIM | ID: wpr-970558

Résumé

Schisandra chinensis, a traditional Chinese medicinal herb, is rich in chemical constituents, including lignans, triterpenes, polysaccharides, and volatile oils. Clinically, it is commonly used to treat cardiovascular, cerebrovascular, liver, gastrointestinal, and respiratory diseases. Modern pharmacological studies have shown that S. chinensis extract and monomers have multiple pharmacological activities in lowering liver fat, alleviating insulin resistance, and resisting oxidative stress, and have good application prospects in alleviating nonalcoholic fatty liver disease(NAFLD). Therefore, this study reviewed the research progress on chemical constituents of S. chinensis and its effect on NAFLD in recent years to provide references for the research on S. chinensis in the treatment of NAFLD.


Sujets)
Stéatose hépatique non alcoolique , Schisandra , Insulinorésistance , Lignanes
18.
China Journal of Chinese Materia Medica ; (24): 707-714, 2023.
Article Dans Chinois | WPRIM | ID: wpr-970540

Résumé

Chemical constituents in soft coral Sarcophyton glaucum were separated and purified by various chromatographic methods. Based on the spectral data, physicochemical properties, and comparison with the data reported in the literature, nine cembranoids, including a new cembranoid named sefsarcophinolide(1) together with eight known cembranoids, namely(+)-isosarcophine(2), sarcomilitatin D(3), sarcophytonolide J(4),(1S,3E,7E,13S)-11,12-epoxycembra-3,7,15-triene-13-ol(5), sarcophytonin B(6),(-)-eunicenone(7), lobophytin B(8), and arbolide C(9), were identified. As revealed by biological activity experiment results, compounds 2-6 had weak acetylcholinesterase inhibitory activity, and compound 5 displayed weak cytotoxicity against K562 tumor cell line.


Sujets)
Animaux , Anthozoa , Acetylcholinesterase , Lignée cellulaire tumorale
19.
China Journal of Chinese Materia Medica ; (24): 700-706, 2023.
Article Dans Chinois | WPRIM | ID: wpr-970539

Résumé

Eleven compounds were isolated from the 95% ethanol extract of the stems of Dendrobium officinale after water extraction by various modern chromatographic techniques, such as silica gel column chromatography(CC), octadecyl-silica(ODS) CC, Sephadex LH-20 CC, preparative thin layer chromatography(PTLC) and preparative high performance liquid chromatography(PHPLC). According to spectroscopic analyses(MS, 1D-NMR, 2D-NMR) combined with optical rotation data and calculated electronic circular dichroism(ECD), their structures were identified as dendrocandin Y(1), 4,4'-dihydroxybibenzyl(2), 3-hydroxy-4',5-dimethoxybibenzyl(3), 3,3'-dihydroxy-5-methoxybibenzyl(4), 3-hydroxy-3',4',5-trimethoxybibenzyl(5), crepidatin(6), alternariol(7), 4-hydroxy-3-methoxypropiophenone(8), 3-hydroxy-4,5-dimethoxypropiophenone(9), auriculatum A(10) and hyperalcohol(11). Among them, compound 1 was a new bibenzyl derivative; compounds 2 and 7-11 have not been previously reported from Dendrobium plants; compound 6 was reported from D.officinale for the first time. Compounds 3-6 exhibited potent antioxidant activity with IC_(50) values of 3.11-9.05 μmol·L~(-1) in ABTS radical scavenging assay. Compound 4 showed significant inhibitory effect on α-glucosidase, with IC_(50) value of 17.42 μmol·L~(-1), indicating that it boasted hypoglycemic activity.


Sujets)
Dendrobium , Dosage biologique , Chromatographie en phase liquide à haute performance , Chromatographie sur couche mince , Bibenzyles
20.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 224-234, 2023.
Article Dans Chinois | WPRIM | ID: wpr-969619

Résumé

Asari Radix et Rhizoma (AR) is a traditional Chinese medicine with a history of more than 2 000 years of medication and has been included in ancient herbal works in the past dynasties. It is effective in releasing the exterior, dispersing cold, dispelling wind, relieving pain, opening orifices, warming the lung, and resolving fluids, and is still widely used in the clinical treatment of influenza, coronavirus disease-2019 (COVID-19) pneumonia, asthma, allergic rhinitis, eye pain, headache, toothache, oral ulcer, eczema, etc. Modern pharmacological studies have shown that AR has antipyretic, anti-inflammatory, analgesic, antibacterial, antiviral, relieving cough and asthma, anti-allergy, and other effects. AR contains a variety of chemical components, in which essential oil is not only associated with functions such as dispelling cold, relieving heat, relieving pain, and resisting inflammation and allergy, but is also toxic. AR also contains lignans, flavonoids, amides, phenanthrenes, alkaloids, and other non-volatile oil components, which play an important role in immunity regulation, anti-inflammation, pain relief, heart strengthening, and blood vessel expansion. The phenanthrene compounds are mainly aristolochic acid analogues, such as aristolochic acid Ⅳa and aristolochic lactam Ⅰ. Aristolochic acid Ⅳa has been proven to have a significant anti-inflammatory effect. The toxicity of AR is related to safrole, aristolochic acids and their analogues, and is also affected by many factors, such as preparation method, dosage, origin, collection time, medicinal part, and decocting time, which should be comprehensively considered in clinical application. Based on the relevant literature in China and abroad, the present study reviewed the correlation of chemical composition and pharmacological and toxicological effects of AR, and the safety of AR, aristolochic acid, safrole, and other components to provide a new perspective for an objective understanding of AR safety, as well as references for rational clinical application, production risk prevention and control, and drug scientific supervision of AR.

SÉLECTION CITATIONS
Détails de la recherche