Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 3 de 3
Filtrer
1.
Chinese Journal of Neurology ; (12): 123-132, 2024.
Article de Chinois | WPRIM | ID: wpr-1029182

RÉSUMÉ

Objective:To explore the clinical phenotypic features and genetic variation characteristics of children with epilepsy-aphasia spectrum due to GRIN2A gene variants confirmed by second-generation sequencing. Methods:The clinical data of 5 children with epilepsy-aphasia spectrum with epileptic onset diagnosed in the Department of Neurology, Children′s Hospital Affiliated to Zhengzhou University, from February 2019 to November 2022 were retrospectively analyzed. Whole-exome genome sequencing of the probands using a second-generation sequencing method confirmed that all 5 cases were children with the GRIN2A gene variant. The characteristics of the GRIN2A gene variants were analyzed. Results:Among the 5 children diagnosed with epileptic aphasia spectrum due to GRIN2A gene variants, the male-to-female ratio was 4∶1, and the age range of onset was 1.5-4.4 years. The clinical phenotype included seizures in all cases, language and intellectual developmental deficits in 4 cases, and attention deficit hyperactivity disorder in 3 cases. The seizures were manifested as focal seizures or secondary generalized seizures, and were effectively controlled with antiepileptic drugs. Among the 5 children, gene variant of case 1 was originated from a paternal heterozygous variant, and cases 2-5 had de novo variants, which were c.2107C>T (p.Gln703 *) nonsense variant, c.2284G>A (p.Gly762Arg) missense variant, c.2197del (p.Ala733Glnfs *3) shifted coding variant, c.2511G>A (p.Trp837 *) nonsense variant, and c.1651+1G>C shear site variant, respectively. None of the 5 loci were reported in the literature. Conclusions:Epilepsy-aphasia spectrum is an epilepsy syndrome with a complex onset, and may have different phenotypes at different genetic variant loci, with focal seizures or secondary generalized seizures, which can be effectively controlled with anti-seizure medication. The GRIN2A gene variant is the genetic etiology of the epileptic aphasia spectrum.

2.
Article de Anglais | WPRIM | ID: wpr-785795

RÉSUMÉ

The implications of germline de novo variants (DNVs) in diseases are well documented. Despite extensive research, inconsistencies between studies remain a challenge, and the distribution and genetic characteristics of DNVs need to be precisely evaluated. To address this issue at the whole-genome scale, a large number of DNVs identified from the whole-genome sequencing of 1,902 healthy trios (i.e., parents and progeny) from the Simons Foundation for Autism Research Initiative study and 20 healthy Korean trios were analyzed. These apparently nonpathogenic DNVs were enriched in functional elements of the genome but relatively depleted in regions of common copy number variants, implying their potential function as triggers of evolution even in healthy groups. No strong mutational hotspots were identified. The pathogenicity of the DNVs was not strongly elevated, reflecting the health status of the cohort. The mutational signatures were consistent with previous studies. This study will serve as a reference for future DNV studies.


Sujet(s)
Humains , Trouble autistique , Études de cohortes , Génome , Parents , Virulence
3.
Article de Anglais | WPRIM | ID: wpr-18093

RÉSUMÉ

De novo variants (DNVs) can arise during parental germ cell formation, fertilization, and the processes of embryogenesis. It is estimated that each individual carries 60-100 such spontaneous variants in the genome, most of them benign. However, a number of recent studies suggested that DNVs contribute to the pathogenesis of a variety of human diseases. Applications of DNVs include aiding in clinical diagnosis and identifying disease-causing genetic factors in patients with atypical symptoms. Therefore, understanding the roles of DNVs in a trio, with healthy parents and an affected offspring, would be crucial in elucidating the genetic mechanism of disease pathogenesis in a personalized manner.


Sujet(s)
Femelle , Humains , Grossesse , Trouble autistique , Diagnostic , Développement embryonnaire , Fécondation , Génome , Cellules germinales , Cardiopathies congénitales , Parents , Maladies rares , Schizophrénie
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE