Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 2 de 2
Filtre
Ajouter des filtres








Gamme d'année
1.
Int. j. morphol ; 40(6): 1594-1601, dic. 2022. ilus, tab, graf
Article Dans Anglais | LILACS | ID: biblio-1421826

Résumé

SUMMARY: Anatomy education has gathered together a great many of many new modalities and was modified from classical lecture-based and laboratory practice system to the blended modules. In the scope of the present study, we develop a new, practical, cost- effective and efficient three dimensional (3D) educational model, which aimed to be helpful for the detection and better understanding of basic neuroanatomy education. Tractographic imaging, fiber dissection, microscopic anatomy and plastination techniques were applied to the white matter regions of the two brains. After the photographs that were taken were converted to 3D images, the specimens were plastinated. By way of establishing an educational model as a whole, we applied it to 202 second-year medical students. The students were separated into two groups when they attended to the theoretical lecture. Group 1 took the classical laboratory education; on the other hand, Group 2 received the newly designed educational model. Pre and post-tests were introduced to each group before and after laboratory sessions, respectively. The success scores were put to comparison. The average achievement scores of each group showed increase significantly (p<0.05) after the laboratory sessions, besides the increase in the post-test results of Group 2 was more statistically significant (p<0.05). Consequently, this new educational model enriched by newly designed unified methods could be regarded as useful for grasping and improving the basic neuroanatomy knowledge.


La educación en anatomía ha reunido una gran cantidad de nuevas modalidades, modificándose el sistema clásico de la práctica del laboratorio y de las clases basadas en conferencias, hacia los módulos combinados. En el ámbito del presente estudio, desarrollamos un modelo educativo tridimensional (3D) nuevo, práctico, rentable y eficiente, que pretendía ser útil para la detección y una mejor comprensión de la educación básica en neuroanatomía. Se tomaron imágenes tractográficas, disección de fibras, anatomía microscópica y técnicas de plastinación en los cerebros. Después de convertir las fotografías que se tomaron en imágenes 3D, se plastinaron los especímenes. A modo de establecer un modelo educativo en su conjunto, lo aplicamos a 202 estudiantes de segundo año de medicina. Los estudiantes fueron separados en dos grupos cuando asistieron a la clase teórica. El Grupo 1 tomó la educación clásica de laboratorio; por su parte, el Grupo 2 recibió el nuevo modelo educativo diseñado para el estudio. Se introdujeron pruebas previas y posteriores a cada grupo, antes y después de las sesiones de laboratorio. Se compararon las puntuaciones. Los puntajes promedio de rendimiento de cada grupo mostraron un aumento significativo (p<0,05) después de las sesiones de laboratorio. Además, se obtuvo un aumento en los resultados positivos, posteriores a la prueba del Grupo 2, siendo estadísticamente significativo (p<0,05). En consecuencia, este modelo educativo, enriquecido por métodos unificados de nuevo diseño, podría considerarse útil para captar y mejorar los conocimientos básicos de neuroanatomía.


Sujets)
Humains , Modèles éducatifs , Enseignement médical/méthodes , Neuroanatomie/enseignement et éducation , Dissection , Cerveau/anatomie et histologie , Imagerie par tenseur de diffusion , Substance blanche/anatomie et histologie , Plastination , Microscopie , Neurofibres
2.
Rev. chil. neurocir ; 40(1): 8-11, jul. 2014. ilus
Article Dans Anglais | LILACS | ID: biblio-831375

Résumé

Introducción/Objetivos: El lóbulo temporal anterior tiene importantes estructuras subcorticales, especialmente fibras blancas que llevan la información visual. La comprensión de esta región anatómica, importantes para la práctica microquirúrgica, se basa en técnicas de disección de fibras. Ellos proporcionan perspectiva tridimensional de esta región y añaden un enfoque quirúrgico exitoso para el tratamiento de las lesiones temporales mesiales. El propósito de este trabajo es el estudio de la anatomía de la pared lateral del ventrículo lateral con el fin de determinar una zona libre de la radiación óptica. Métodos: Se diseccionaron diez hemisferios cerebrales, preparados de acuerdo con técnicas de Klingler. Se utilizan espátulas de madera con puntas de diferentes tamaños. La radiación óptica fue delimitada y las medidas se tomaron a partir de esta estructura para el polo temporal, que se utiliza como punto de referencia. Resultados: Abordajes para el cuerno temporal superior a 27 mm más allá del polo temporal pueden cruzar asa de Meyer y determinar un perjuicio a la radiación óptica con los consiguientes déficits en los campos visuales. Conclusión: La determinación de la zona de libre de fibras de radiación óptica es factible. En este trabajo se podría inferir que el área libre de la radiación óptica se encuentra en la región anterioinferior del lóbulo temporal a una distancia de hasta 2,7 centímetros desde el polo temporal y permite el acceso a el hipocampo y la amígdala durante la cirugía de la epilepsia. Resecciones más grandes que estas medidas permiten aclarar de una lesión a la radiación óptica con los consiguientes déficits en los campos visuales.


Introduction/Objective: The anterior temporal lobe has important subcortical structures, especially white fibers that lead visual information. Understanding this anatomical region, important for microsurgical practice, is based on fibers dissection techniques. They provide three-dimensional perspective for this region and add a successful surgical approach for the treatment of mesial temporal lesions. The purpose of this paper is to study the anatomy of the lateral wall of the lateral ventricle in order to determine a free area of the optical radiation. Methods: Ten cerebral hemispheres were dissected, prepared according to Klingler´s techniques. Wooden spatulas with tips of various sizes were used. The optical radiation was delimited and measures were taken from this structure to the temporal pole, used as a reference point. Results: Approaches to the temporal horn larger than 27 mm beyond the temporal pole can cross Meyer´s loop and determine injury to the optical radiation with consequent postoperatively deficits in visual fields. Conclusion: The determination of free area of optical radiation fibers is feasible. In this work we could infer that free area of optical radiation is located in the anterioinferior region of the temporal lobe at a distance of up to 2.7 centimeters from the temporal pole and allows access to the hippocampus and amygdala during epilepsy surgery. Larger resections than these measures can possibly determine injury to the optical radiation with consequent deficits in visual fields.


Sujets)
Humains , Dissection/méthodes , Épilepsie temporale/chirurgie , Lobe temporal/anatomie et histologie , Lobe temporal/chirurgie , Lobe temporal/traumatismes , Colliculus supérieurs , Voies optiques
SÉLECTION CITATIONS
Détails de la recherche