Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 2 de 2
Filtre
Ajouter des filtres








Gamme d'année
1.
Int. j. morphol ; 36(4): 1310-1315, Dec. 2018. tab, graf
Article Dans Anglais | LILACS | ID: biblio-975701

Résumé

Exposure to normobaric hyperoxia (NH) is known to increase the production of reactive oxygen species (ROS) by mitochondria. The present study was designed to examine mitochondrial ultrastructure morphological changes in the cortical brainin relation to glutathione peroxidase (GPX) activity and free radicals (FR) productions in brain tissue during hyperoxia exposure. The experimental groups were exposed to NH for 24 and 48 h continuously. Following the exposure periods, animals were sacrificed and cortical tissues were divided randomly into two parts; the first part was processed for the ultrastructural examination and the second was homogenized for GPX and FR determinations. Analysis of variance (ANOVA) showed that the main effects of O2 exposure periods were significant (p<0.05) for GPX and FR. Pair-wise means comparisons showed that NH elevated the average (+SE) GPX activity significantly (p<0.05) from the baseline control value of 5670.99+556.34 to13748.42+283.04 and 15134.19+1529.26 U/L with increasing length of NH exposure period from 24 to 48 h, respectively. Similarly, FR production was increased significantly (p<0.05) to 169.73+10.31 and 185.33+21.87, above baseline control of 105.27+5.25 Unit. Ultrastructure examination showed that O2 breathing for 48 h resulted in giant and swelled mitochondria associated with diluted inner membrane and damaged cristae. These mitochondria pathological alterations were associated with damages of myelin, axonal and cellular organelles. Normobaric-hyperoxia inducts mitochondria oxidative stress (MOS) and the subsequent rise of ROS causes variety of ultrastructure morphological pathological alterations in the organelles of cortical brain cells.


Se sabe que la exposición a la hiperoxia normobárica (HN) aumenta la producción de especies reactivas de oxígeno (ERO) por parte de las mitocondrias. El estudio se diseñó para examinar los cambios morfológicos de la ultraestructura mitocondrial en la corteza cerebral con la actividad de la glutatión peroxidasa (GPX) y la producción de radicales libres (RL) en el tejido cerebral durante la exposición a la hiperoxia. Los grupos experimentales fueron expuestos a HN durante 24 y 48 h continuamente. Tras los períodos de exposición, los animales se sacrificaron y los tejidos corticales se dividieron aleatoriamente en dos partes; la primera parte se procesó para el examen ultraestructural y la segunda se homogeneizó para las determinaciones de GPX y RL. El análisis de varianza (ANOVA) mostró que los efectos principales de los períodos de exposición al O2 fueron significativos (p <0,05) para GPX y RL. Las comparaciones de medias por pares mostraron que la HN elevó la actividad promedio de GPX (+ SE) significativamente (p <0,05) desde el valor de control de línea base de 5670,99 + 556,34 a 13748,42 + 283,04 y 15134,19 + 1529,26 U / L con una mayor duración del período de exposición a HN de 24 a 48 h, respectivamente. De manera similar, la producción de RL se incrementó significativamente (p <0,05) a 169,73 + 10,31 y 185,33 + 21,87, por encima del control de referencia de 105,27 + 5,25 unidades. El examen de la ultraestructura mostró que la respiración de O2 durante 48 h dio lugar a mitocondrias gigantes e hinchadas asociadas con la membrana interna diluida y las crestas dañadas. Estas alteraciones patológicas de las mitocondrias se asociaron con daños de mielina, axones y organelos celulares. La hiperoxia normobárica induce el estrés oxidativo mitocondrial (MOS) y el posterior aumento de las ERO provoca una variedad de alteraciones patológicas y morfológicas en los organelos de las células cerebrales corticales.


Sujets)
Animaux , Rats , Cortex cérébral/ultrastructure , Hyperoxie/anatomopathologie , Mitochondries/anatomopathologie , Cortex cérébral/enzymologie , Cortex cérébral/anatomopathologie , Analyse de variance , Espèces réactives de l'oxygène , Rat Wistar , Espèces réactives de l'azote , Glutathione peroxidase/métabolisme , Mitochondries/ultrastructure
2.
Rev. invest. clín ; 58(4): 350-358, jul.-ago. 2006. ilus, tab
Article Dans Espagnol | LILACS | ID: lil-632371

Résumé

Peroxynitrite (ONOO-) is a reactive nitrogen specie produced by the reaction between nitric oxide (NO• ) and super-oxide anion (O2.-). NO• is produced by nitric oxide synthase (NOS) and O2.- is formed by the addition of an electron to O2 in enzymatic as well as nonenzymatic way. NADPH oxidase and xanthine oxidase are some of the enzymes involved in O2.-formation. ONOO- is an oxidant specie which is able to modify a great number of biomolecules such as aminoacids, proteins, enzymes and cofactors. ONOO - is able to induce nitration leading to the formation of 3-nytrotyrosine. This change has been widely studied, and although it is not only produced by ONOO-, but also by other reactive nitrogen species, it has been accepted like footprint of ONOO-. The excessive production of reactive nitrogen species is known as nitrosative stress that is able to induce structural damage leading to the loss of cell function. Furthermore, synthetic metalloporphyrins that metabolize ONOO- in a specific way are being used to determine if ONOO- is involved in different diseases, such as Alzheimer, Huntington, diabetes, hypertension, arthritis, colitis, cardiac and renal complications. Finally, these metalloporphyrins may be of potential therapeutic value in diseases related to ONOO- production.


El peroxinitrito (ONOO-) es una especie reactiva de nitrógeno formada por la reacción entre el óxido nítrico (NO•) y el anión superóxido (O2.- ). El NO' es sintetizado por la sintasa de óxido nítrico (NOS) y el O2•- se puede sintetizar de forma no enzimática, por la adición de un electrón al O2 o por medio de diversas enzimas como la NADPH oxidasa y la xantina oxidasa. El ONOO-es una especie oxidante capaz de modificar un gran número de biomoléculas entre las que se encuentran aminoácidos, proteínas, enzimas y cofactores de enzimas. El ONOO- puede inducir nitración de residuos de tirosina promoviendo la formación de 3-nitrotirosina (3-NT). Esta modificación ha sido muy estudiada y aunque no es producida exclusivamente por ONOO- sino también por otras especies reactivas de nitrógeno, se acepta actualmente como una evidencia de la formación de ONOO-. El aumento excesivo de este último, así como de otras especies reactivas de nitrógeno se conoce como estrés nitrosativo y puede causar daño estructural alterando la funcionalidad de las células. Por otra parte, se han desarrollado una serie de metaloporfirinas que descomponen específicamente al ONOO- y éstas han ayudado a determinar que el ONOO - es una especie implicada en enfermedades como Alzheimer, Huntington, diabetes, hipertensión, artritis, colitis y diversas complicaciones cardiacas y renales. Además, estas metaloporfirinas pueden ser de utilidad terapéutica en aquellas enfermedades asociadas a la producción de ONOO-.


Sujets)
Humains , Acide peroxynitreux/métabolisme , Piégeurs de radicaux libres/métabolisme , Monoxyde d'azote/métabolisme , Oxydants/métabolisme , Superoxydes/métabolisme
SÉLECTION CITATIONS
Détails de la recherche