Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 4 de 4
Filtre
Ajouter des filtres








Gamme d'année
1.
J. venom. anim. toxins incl. trop. dis ; 21: 36, 31/03/2015. tab, graf, ilus
Article Dans Anglais | LILACS, VETINDEX | ID: biblio-954735

Résumé

Background Millepora alcicornis is a branching hydrocoral common throughout the Caribbean Sea. Like other members of this genus, this species is capable of inducing skin eruptions and blisters with severe pain after contact. In the present study, we investigated the toxicity of theM. alcicornis aqueous extract on several animal models. Considering that some cnidarian hemolysins have been associated to local tissue damage, since they also induce lysis of other cell types, we also made a partial characterization of the hemolytic activity of M. alcicornis aqueous extract. This information is important for understanding the defense mechanisms of the "fire corals".Methods The effects of pH, temperature, and some divalent cations on the hemolytic activity of the extract were assayed, followed by a zymogram analysis to detect the cytolysins and determine their approximate molecular weight. The toxicity of the aqueous extract was assayed in mice, by intravenous administration, and histopathological changes on several tissues were analyzed by light microscopy. The toxicity of the extract was also tested inArtemia salina nauplii, and the damages caused on the crustaceans were analyzed by transmission and scanning electron microscopy.Results The hemolytic activity of the hydrocoral extract was enhanced in the presence of Ca 2+ (≥2 mM), Mg 2+ (≥6 mM), and Ba2+ (≥0.1 mM); however, it was reduced in the presence of Cu2+(≥0.1 mM), Zn 2+ (≥6 mM), and EDTA (≥0.34 mM). Differences in the pH did not affect the hemolytic activity, but it was temperature-sensitive, since preincubation at ≥ 50 °C sharply reduced hemolysis. The zymogram showed the presence of two types of hemolysins: ~ 28-30 kDa proteins with phospholipase A 2 activity and ~ 200 kDa proteins that do not elicit enzymatic activity. The aqueous extract of this cnidarian was lethal to mice (LD 50 = 17 μg protein/g), and induced kidney, liver, and lung damages. Under denaturing conditions, the aqueous extract completely lost its toxic and hemolytic activities.Conclusions The results showed that the M. alcicornis aqueous extract contains two types of thermolabile hemolysins: proteins of approximately 28-30 kDa with PLA 2 activity, while the others are larger proteins of approximately 200 kDa, which do not possess PLA 2activity. Those thermolabile cytolysins, which are stable to pH changes and whose activity is calcium dependent, are capable of inducing damage in lung, kidney and liver tissues, resulting in a slow death of mice. M. alcicorniscytolysins also provoke tissue dissociation inArtemia salina nauplii that might be attributed to pore forming mechanisms.(AU)


Sujets)
Cnidaria , Cytotoxines , Toxicité , Hémolyse , Environnement marin
2.
J. venom. anim. toxins incl. trop. dis ; 21: 1-13, 31/03/2015. graf, tab, ilus
Article Dans Anglais | LILACS, VETINDEX | ID: biblio-1484634

Résumé

Background Millepora alcicornis is a branching hydrocoral common throughout the Caribbean Sea. Like other members of this genus, this species is capable of inducing skin eruptions and blisters with severe pain after contact. In the present study, we investigated the toxicity of theM. alcicornis aqueous extract on several animal models. Considering that some cnidarian hemolysins have been associated to local tissue damage, since they also induce lysis of other cell types, we also made a partial characterization of the hemolytic activity of M. alcicornis aqueous extract. This information is important for understanding the defense mechanisms of the fire corals.Methods The effects of pH, temperature, and some divalent cations on the hemolytic activity of the extract were assayed, followed by a zymogram analysis to detect the cytolysins and determine their approximate molecular weight. The toxicity of the aqueous extract was assayed in mice, by intravenous administration, and histopathological changes on several tissues were analyzed by light microscopy. The toxicity of the extract was also tested inArtemia salina nauplii, and the damages caused on the crustaceans were analyzed by transmission and scanning electron microscopy.Results The hemolytic activity of the hydrocoral extract was enhanced in the presence of Ca 2+ (2 mM), Mg 2+ (6 mM), and Ba2+ (0.1 mM); however, it was reduced in the presence of Cu2+(0.1 mM), Zn 2+ (6 mM), and EDTA (0.34 mM). Differences in the pH did not affect the hemolytic activity, but it was temperature-sensitive, since preincubation at 50 °C sharply reduced hemolysis. The zymogram showed the presence of two types of hemolysins: ~ 2830 kDa proteins with phospholipase A 2 activity and ~ 200 kDa proteins that do not elicit enzymatic activity. The aqueous extract of this cnidarian was lethal to mice (LD 50 = 17 g protein/g), and induced kidney, liver, and lung damages. Under denaturing conditions, the aqueous extract completely lost its toxic and hemolytic activities.Conclusions The results showed that the M. alcicornis aqueous extract contains two types of thermolabile hemolysins: proteins of approximately 2830 kDa with PLA 2 activity, while the others are larger proteins of approximately 200 kDa, which do not possess PLA 2activity. Those thermolabile cytolysins, which are stable to pH changes and whose activity is calcium dependent, are capable of inducing damage in lung, kidney and liver tissues, resulting in a slow death of mice. M. alcicorniscytolysins also provoke tissue dissociation inArtemia salina nauplii that might be attributed to pore forming mechanisms.


Sujets)
Anthozoa , Cytotoxines , Caraïbe , Toxicité
3.
J. venom. anim. toxins incl. trop. dis ; 20: 49, 04/02/2014. tab, ilus, graf
Article Dans Anglais | LILACS, VETINDEX | ID: biblio-954713

Résumé

Background Millepora complanata is a plate-like fire coral common throughout the Caribbean. Contact with this species usually provokes burning pain, erythema and urticariform lesions. Our previous study suggested that the aqueous extract of M. complanata contains non-protein hemolysins that are soluble in water and ethanol. In general, the local damage induced by cnidarian venoms has been associated with hemolysins. The characterization of the effects of these components is important for the understanding of the defense mechanisms of fire corals. In addition, this information could lead to better care for victims of envenomation accidents.Methods An ethanolic extract from the lyophilized aqueous extract was prepared and its hemolytic activity was compared with the hemolysis induced by the denatured aqueous extract. Based on the finding that ethanol failed to induce nematocyst discharge, ethanolic extracts were prepared from artificially bleached and normal M. complanata fragments and their hemolytic activity was tested in order to obtain information about the source of the heat-stable hemolysins.Results Rodent erythrocytes were more susceptible to the aqueous extract than chicken and human erythrocytes. Hemolytic activity started at ten minutes of incubation and was relatively stable within the range of 28-50°C. When the aqueous extract was preincubated at temperatures over 60°C, hemolytic activity was significantly reduced. The denatured extract induced a slow hemolytic activity (HU50= 1,050.00 ± 45.85 μg/mL), detectable four hours after incubation, which was similar to that induced by the ethanolic extract prepared from the aqueous extract (HU50= 1,167.00 ± 54.95 μg/mL). No significant differences were observed between hemolysis induced by ethanolic extracts from bleached and normal fragments, although both activities were more potent than hemolysis induced by the denatured extract.Conclusions The results showed that the aqueous extract of M. complanata possesses one or more powerful heat-labile hemolytic proteins that are slightly more resistant to temperature than jellyfish venoms. This extract also contains slow thermostable hemolysins highly soluble in ethanol that are probably derived from the body tissues of the hydrozoan.(AU)


Sujets)
Venins de cnidaires , Hydrozoa , Mécanismes de défense , Hémolyse
4.
J. venom. anim. toxins incl. trop. dis ; 20: 1-9, 04/02/2014. ilus, tab, graf
Article Dans Anglais | LILACS, VETINDEX | ID: biblio-1484600

Résumé

Background Millepora complanata is a plate-like fire coral common throughout the Caribbean. Contact with this species usually provokes burning pain, erythema and urticariform lesions. Our previous study suggested that the aqueous extract of M. complanata contains non-protein hemolysins that are soluble in water and ethanol. In general, the local damage induced by cnidarian venoms has been associated with hemolysins. The characterization of the effects of these components is important for the understanding of the defense mechanisms of fire corals. In addition, this information could lead to better care for victims of envenomation accidents.Methods An ethanolic extract from the lyophilized aqueous extract was prepared and its hemolytic activity was compared with the hemolysis induced by the denatured aqueous extract. Based on the finding that ethanol failed to induce nematocyst discharge, ethanolic extracts were prepared from artificially bleached and normal M. complanata fragments and their hemolytic activity was tested in order to obtain information about the source of the heat-stable hemolysins.Results Rodent erythrocytes were more susceptible to the aqueous extract than chicken and human erythrocytes. Hemolytic activity started at ten minutes of incubation and was relatively stable within the range of 28-50°C. When the aqueous extract was preincubated at temperatures over 60°C, hemolytic activity was significantly reduced. The denatured extract induced a slow hemolytic activity (HU50= 1,050.00 ± 45.85 g/mL), detectable four hours after incubation, which was similar to that induced by the ethanolic extract prepared from the aqueous extract (HU50= 1,167.00 ± 54.95 g/mL). No significant differences were observed between hemolysis induced by ethanolic extracts from bleached and normal fragments, although both activities were more potent than hemolysis induced by the denatured extract...


Sujets)
Animaux , Cytotoxines/analyse , Hydrozoa , Hémolysines , Venins de cnidaires
SÉLECTION CITATIONS
Détails de la recherche