Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 3 de 3
Filtrer
Plus de filtres








Gamme d'année
1.
Braz. arch. biol. technol ; Braz. arch. biol. technol;57(6): 962-970, Nov-Dec/2014. tab, graf
Article de Anglais | LILACS | ID: lil-730391

RÉSUMÉ

Different culture conditions viz. additional carbon and nitrogen content, inoculum size and age, temperature and pH of the mixed culture of Bifidobacterium bifidum and Lactobacillus acidophilus were optimized using response surface methodology (RSM) and artificial neural network (ANN). Kinetic growth models were fitted for the cultivations using a Fractional Factorial (FF) design experiments for different variables. This novel concept of combining the optimization and modeling presented different optimal conditions for the mixture of B. bifidum and L. acidophilus growth from their one variable at-a-time (OVAT) optimization study. Through these statistical tools, the product yield (cell mass) of the mixture of B. bifidum and L. acidophilus was increased. Regression coefficients (R2) of both the statistical tools predicted that ANN was better than RSM and the regression equation was solved with the help of genetic algorithms (GA). The normalized percentage mean squared error obtained from the ANN and RSM models were 0.08 and 0.3%, respectively. The optimum conditions for the maximum biomass yield were at temperature 38°C, pH 6.5, inoculum volume 1.60 mL, inoculum age 30 h, carbon content 42.31% (w/v), and nitrogen content 14.20% (w/v). The results demonstrated a higher prediction accuracy of ANN compared to RSM.

2.
Braz. arch. biol. technol ; Braz. arch. biol. technol;57(1): 15-22, Jan.-Feb. 2014. ilus, graf, tab
Article de Anglais | LILACS | ID: lil-702564

RÉSUMÉ

The culture conditions viz. additional carbon and nitrogen content, inoculum size, age, temperature and pH of Lactobacillus acidophilus were optimized using response surface methodology (RSM) and artificial neural network (ANN). Kinetic growth models were fitted to cultivations from a Box-Behnken Design (BBD) design experiments for different variables. This concept of combining the optimization and modeling presented different optimal conditions for L. acidophilus growth from their original optimization study. Through these statistical tools, the product yield (cell mass) of L. acidophilus was increased. Regression coefficients (R²) of both the statistical tools predicted that ANN was better than RSM and the regression equation was solved with the help of genetic algorithms (GA). The normalized percentage mean squared error obtained from the ANN and RSM models were 0.06 and 0.2%, respectively. The results demonstrated a higher prediction accuracy of ANN compared to RSM.

3.
Braz. arch. biol. technol ; Braz. arch. biol. technol;54(6): 1357-1366, Nov.-Dec. 2011. ilus, graf, tab
Article de Anglais | LILACS | ID: lil-608449

RÉSUMÉ

The aim of this work was to optimize the biomass production by Bifidobacterium bifidum 255 using the response surface methodology (RSM) and artificial neural network (ANN) both coupled with GA. To develop the empirical model for the yield of probiotic bacteria, additional carbon and nitrogen content, inoculum size, age, temperature and pH were selected as the parameters. Models were developed using » fractional factorial design (FFD) of the experiments with the selected parameters. The normalized percentage mean squared error obtained from the ANN and RSM models were 0.05 and 0.1 percent, respectively. Regression coefficient (R²) of the ANN model showed higher prediction accuracy compared to that of the RSM model. The empirical yield model (for both ANN and RSM) obtained were utilized as the objective functions to be maximized with the help of genetic algorithm. The optimal conditions for the maximal biomass yield were 37.4 °C, pH 7.09, inoculum volume 1.97 ml, inoculum age 58.58 h, carbon content 41.74 percent (w/v), and nitrogen content 46.23 percent (w/v). The work reported is a novel concept of combining the statistical modeling and evolutionary optimization for an improved yield of cell mass of B. bifidum 255.

SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE