Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 1 de 1
Filtre
Ajouter des filtres








Gamme d'année
1.
Chinese Traditional and Herbal Drugs ; (24): 3609-3616, 2020.
Article Dans Chinois | WPRIM | ID: wpr-846285

Résumé

The implementation of membrane technology in the manufacturing of Chinese materia medica (CMM) plays a critical role in the strategic plan and demand from the perspective of national science and technology, and it is a new and high technology that needs to be popularized in Chinese medicine pharmaceutical industry. The manufacturing technology of CMM is primarily based on the theory and practices of chemical engineering in which the upgrade of its separation technology mainly relies on the advancement in chemical engineering. Our authors have been exploring and implementing membrane technology in the green manufacturing process of CMM in the past decade. Recently, we were granted funding in the topic of "The Modernization of Traditional Chinese Medicine" from The National Key Research and Development Program of China. In the research proposal, we introduced the emerging concept of "material-chemistry engineering", and suggested the concept of theoretical framework for "the process design and engineering of membrane-based green manufacturing of CMM". The framework included the establishment of analytical testing approach for precise analysis in aqueous CMM environment, a systematic testing and inspection method for the membrane and membrane process to guarantee the safety and effectiveness of the CMM products, as well as the integrated membrane process design and optimization for the CMM manufacturing process. The ultimate goal of the proposal is to achieve high flux and decent separation efficiency for CMM production in multi-scale range, in particular to understand the correlation between the aqueous CMM environment and the structure, property and preparation of the membrane. Furthermore, with the aid of computational modeling in process design and manufacturing, the theoretical foundation of membrane-based CMM green manufacturing can be assured. The innovation in the interdisciplinary of CMM production and material-chemistry engineering will help overcoming the current bottleneck encountered in the CMM manufacturing industry in China, resolving the urgent issues of energy, resources and environment, and providing a feasible solution to sustainable development.

SÉLECTION CITATIONS
Détails de la recherche