Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 2 de 2
Filtre
Ajouter des filtres








Gamme d'année
1.
Braz. j. infect. dis ; 24(3): 191-200, May-June 2020. tab, graf
Article Dans Anglais | LILACS, ColecionaSUS | ID: biblio-1132446

Résumé

ABSTRACT Introduction: Cytomegalovirus may cause severe disease in immunocompromised patients. Nowadays, quantitative polymerase chain reaction is the gold-standard for both diagnosis and monitoring of cytomegalovirus infection. Most of these assays use cytomegalovirus automated molecular kits which are expensive and therefore not an option for small laboratories, particularly in the developing world. Objective: This study aimed to optimize and validate an in-house cytomegalovirus quantitative polymerase chain reaction test calibrated using the World Health Organization Standards, and to perform a cost-minimization analysis, in comparison to a commercial cytomegalovirus quantitative polymerase chain reaction test. Study design: The methodology consisted of determining: optimization, analytical sensitivity, analytical specificity, precision, curve variability analysis, and inter-laboratorial reproducibility. Patients (n = 30) with known results for cytomegalovirus tested with m2000 RealTime System (Abbott Laboratories, BR) were tested with the in-house assay, as well as patients infected with other human herpes virus, in addition to BK virus. A cost-minimization analysis was performed, from a perspective of the laboratory, assuming diagnostic equivalence of the methodologies applied in the study. Results: The in-house assay had a limit of detection and quantification of 60.3 IU/mL, with no cross-reactivity with the other viral agents tested. Moreover, the test was precise and had a R 2 of 0.954 when compared with the m2000 equipment. The cost analysis showed that the assay was economically advantageous costing a median value of 37.8% and 82.2% in comparison to the molecular test in use at the hospital and the m2000 equipment, respectively. Conclusions: These results demonstrated that in-house quantitative polymerase chain reaction testing is an attractive alternative in comparison to automated molecular platforms, being considerably less expensive and as efficacious as the commercial methods.


Sujets)
Humains , Trousses de réactifs pour diagnostic , Infections à cytomégalovirus/diagnostic , Cytomegalovirus , ADN viral , Reproductibilité des résultats , Sensibilité et spécificité , Charge virale , Coûts et analyse des coûts , Réaction de polymérisation en chaine en temps réel
2.
Article Dans Anglais | IMSEAR | ID: sea-134993

Résumé

Background: The use of combination antiretroviral therapy (cART) has become a standard of care in the treatment of HIV infection. However, antiretroviral drug resistance occurs in a substantial number of patients. In resourcelimited settings, genotypic resistance assay using a commercial kit is costly. Objective: Focus on the validation of an in-house HIV-1 specific genotypic drug resistance assay in Thai patients failing cART. Materials and methods: Results of HIV-1 genotypic drug resistance assay was evaluated by comparing an inhouse method to a commercial test. The TRUGENE HIV-1 genotyping kit was used in 79 plasma specimens (49 from HIV patients failing cART therapy and 30 from proficiency testing panels). Results: The results from the in-house assay were comparable to those obtained from the TRUGENE HIV-1 genotyping kit with >99.0% codon-to-codon agreement. The lower limit of detection by the in-house assay was approximately 100 copies/mL of HIV-1 RNA. In addition, this in-house assay would allow testing of samples from patients infected with HIV-1 subtype other than B. Conclusion: The in-house HIV-1 genotypic drug resistance assay may be used as an alternative to commercial kits, particularly in resource limited settings.

SÉLECTION CITATIONS
Détails de la recherche