Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 2.999
Filtre
1.
Article Dans Espagnol | LILACS-Express | LILACS | ID: biblio-1563621

Résumé

Introducción: los glucocorticoides (GC) han sido ampliamente utilizados en el tratamiento de patologías oculares debido a sus efectos antiinflamatorios y anti-angiogénicos. Se ha sugerido que el mecanismo de acción anti-angiogénico de los GC puede estar relacionado con la enzima fosfatidilinositol-3-cinasa (PI3K), la cual desempeña un papel crucial en la angiogénesis mediada por el receptor de acetilcolina nicotínico alfa 7 (α7-nAChR). La PI3K es una enzima lipoproteica heterodimérica compuesta por las subunidades; reguladora (p85) y catalítica (p110). Objetivo: esta revisión examina la evidencia de cómo los GC modulan la vía de señalización de PI3K activada por α7-nAChR en el proceso de angiogénesis in vitro. Metodología: se realizó una revisión bibliográfica utilizando los motores de búsqueda PubMed y Web of Science, relacionando los conceptos "endothelial cell", "α7-nAChR", "PI3K" y "glucocorticoid". Resultados: se seleccionaron 30 artículos que informaron sobre la expresión de α7-nAChR y PI3K en células endoteliales humanas. Además, del efecto de dexametasona sobre las subunidades de PI3K y Akt (proteína cinasa B) en modelos humano, murino y porcino. A partir de estos hallazgos, se propuso un mecanismo mediante el cual los GC ejercen su efecto anti-angiogénico a través de la modulación en la expresión de la subunidad inhibitoria p85 de PI3K activada por α7-nAChR en células endoteliales humanas. Conclusión: los antecedentes evidencian que dexametasona, ejerce su mecanismo de acción anti-angiogénico mediante el incremento de la expresión de la subunidad inhibitoria p85 de PI3K activada por α7-nAChR.


Introduction: glucocorticoids (GC) have been widely used in the treatment of ocular pathologies due to their anti-inflammatory and anti-angiogenic effects. It has been suggested that the anti-angiogenic mechanism of GC may be related to the enzyme phosphatidylinositol-3-kinase (PI3K), which plays a crucial role in angiogenesis mediated by the alpha 7 nicotinic acetylcholine receptor (α7-nAChR). PI3K is a heterodimeric lipoprotein enzyme composed of regulatory (p85) and catalytic (p110) subunits. Objective: this review examines the evidence of how the GC modulate the PI3K signaling pathway activated by α7-nAChR in the process of in vitro angiogenesis. Methodology: a literature search was conducted using the PubMed and Web of Science search engines, relating the concepts of "endothelial cell," "α7-nAChR," "PI3K," and "glucocorticoid." Results: thirty-two articles were selected that reported on the expression of α7-nAChR and PI3K in human endothelial cells. Furthermore, the effect of dexamethasone on PI3K and Akt (protein kinase B) subunits was documented in human, murine, and porcine models. Based on these findings, a mechanism was proposed whereby GC exert their anti-angiogenic effect through modulation of the expression of the inhibitory p85 subunit of PI3K activated by α7-nAChR in human endothelial cells. Conclusion: background evidence suggests that dexamethasone exerts its anti-angiogenic mechanism of action by increasing the expression of the α7-nAChR-activated PI3K inhibitory subunit p85

2.
Arq. bras. cardiol ; 121(3): e20230470, Mar.2024. tab, graf
Article Dans Portugais | LILACS-Express | LILACS | ID: biblio-1557032

Résumé

Resumo Fundamento: A doença por coronavírus 2019 (COVID-19) está associada à hipercoagulabilidade. Permanece incerto se a anticoagulação contínua para fibrilação atrial (FA) em pacientes que posteriormente contraem COVID-19 melhora os desfechos clínicos. Objetivos: Comparar a anticoagulação oral crônica com ausência de anticoagulação prévia em pacientes com FA que contraíram uma infecção por COVID-19 em relação aos desfechos de mortalidade por todas as causas, mortalidade por COVID-19, admissão em unidade de terapia intensiva (UTI) e hospitalização. Métodos: Buscamos sistematicamente no PubMed, Embase e Cochrane Library estudos elegíveis desde o início até dezembro de 2022. Incluímos estudos que compararam desfechos de COVID-19 em pacientes com e sem anticoagulação crônica prévia para FA. Foram agrupadas razões de risco (RR) com intervalos de confiança (IC) de 95% por meio de um modelo de efeitos aleatórios. O nível de significância foi estabelecido em p < 0,05. As avaliações da qualidade e do risco de viés foram realizadas de acordo com as recomendações da Cochrane. Resultados: Foram identificados 10 estudos abrangendo 1.177.858 pacientes com COVID-19 e FA, dos quais 893.772 (75,9%) estavam em anticoagulação crônica prévia para FA. Em pacientes com COVID-19, a anticoagulação crônica para FA reduziu significativamente a mortalidade por todas as causas (RR 0,75; IC 95% 0,57 a 0,99; p = 0,048; I2 = 89%) e a mortalidade relacionada à COVID-19 (RR 0,76; IC 95% 0,72 a 0,79; p < 0,001; I2 = 0%) quando comparada com a ausência de anticoagulação prévia. Em contrapartida, não houve diferença entre os grupos em relação à hospitalização (RR 1,08; IC 95% 0,82 a 1,41; p = 0,587; I2 = 95%) ou internação em UTI (RR 0,86; IC 95% 0,68 a 1,09; p = 0,216; I2 = 69%). Conclusões: Nesta metanálise, a anticoagulação crônica para pacientes com FA que contraíram COVID-19 foi associada a taxas significativamente mais baixas de mortalidade por todas as causas e mortalidade relacionada à COVID-19 em comparação com a ausência de anticoagulação anterior.


Abstract Background: Coronavirus disease 2019 (COVID-19) is associated with hypercoagulability. It remains uncertain whether ongoing anticoagulation for atrial fibrillation (AF) in patients who later contract COVID-19 improves clinical outcomes. Objectives: To compare chronic oral anticoagulation with no previous anticoagulation in patients with AF who contracted a COVID-19 infection concerning the outcomes of all-cause mortality, COVID-19 mortality, intensive care unit (ICU) admission, and hospitalization. Methods: We systematically searched PubMed, Embase, and Cochrane Library for eligible studies from inception to December 2022. We included studies comparing COVID-19 outcomes in patients with versus without prior chronic anticoagulation for AF. Risk ratios (RR) with 95% confidence intervals (CI) were pooled with a random-effects model. The level of significance was set at p < 0.05. Quality assessment and risk of bias were performed according to Cochrane recommendations. Results: Ten studies comprising 1,177,858 patients with COVID-19 and AF were identified, of whom 893,772 (75.9%) were on prior chronic anticoagulation for AF. In patients with COVID-19, being on chronic anticoagulation for AF significantly reduced all-cause mortality (RR 0.75; 95% CI 0.57 to 0.99; p = 0.048; I2 = 89%) and COVID-19-related mortality (RR 0.76; 95% CI 0.72 to 0.79; p < 0.001; I2 = 0%) when compared with no prior anticoagulation. In contrast, there was no difference between groups regarding hospitalization (RR 1.08; 95% CI 0.82 to 1.41; p = 0.587; I2 = 95%) or ICU admission (RR 0.86; 95% CI 0.68 to 1.09; p = 0.216; I2 = 69%). Conclusions: In this meta-analysis, chronic anticoagulation for patients with AF who contracted COVID-19 was associated with significantly lower rates of all-cause mortality and COVID-19-related mortality as compared with no previous anticoagulation.

3.
Braz. j. med. biol. res ; 57: e13474, fev.2024. graf
Article Dans Anglais | LILACS-Express | LILACS | ID: biblio-1557323

Résumé

Coenzyme Q10 (CoQ10) is a potent antioxidant that is implicated in the inhibition of osteoclastogenesis, but the underlying mechanism has not been determined. We explored the underlying molecular mechanisms involved in this process. RAW264.7 cells received receptor activator of NF-κB ligand (RANKL) and CoQ10, after which the differentiation and viability of osteoclasts were assessed. After the cells were treated with CoQ10 and/or H2O2 and RANKL, the levels of reactive oxygen species (ROS) and proteins involved in the PI3K/AKT/mTOR and MAPK pathways and autophagy were tested. Moreover, after the cells were pretreated with or without inhibitors of the two pathways or with the mitophagy agonist, the levels of autophagy-related proteins and osteoclast markers were measured. CoQ10 significantly decreased the number of TRAP-positive cells and the level of ROS but had no significant impact on cell viability. The relative phosphorylation levels of PI3K, AKT, mTOR, ERK, and p38 were significantly reduced, but the levels of FOXO3/LC3/Beclin1 were significantly augmented. Moreover, the levels of FOXO3/LC3/Beclin1 were significantly increased by the inhibitors and mitophagy agonist, while the levels of osteoclast markers showed the opposite results. Our data showed that CoQ10 prevented RANKL-induced osteoclastogenesis by promoting autophagy via inactivation of the PI3K/AKT/mTOR and MAPK pathways in RAW264.7 cells.

4.
Int. j. morphol ; 42(1): 205-215, feb. 2024. ilus, tab
Article Dans Anglais | LILACS | ID: biblio-1528814

Résumé

SUMMARY: This study assessed the effects of Acacia Senegal (AS) combined with insulin on Na+/K+-ATPase (NKA) activity and mRNA expression, serum glucose, renal function, and oxidative stress in a rat model of diabetic nephropathy (DN). Sixty rats were equally divided into six groups: normal control, normal+AS, diabetic (DM), DM+insulin, DM+AS, and DM+insulin+AS groups. Diabetes mellitus (type 1) was induced by a single injection of streptozotocin (65 mg/kg), and insulin and AS treatments were carried until rats were culled at the end of week 12. Serum glucose and creatinine levels, hemoglobin A1c (HbA1c) were measured. Renal homogenate levels of NKA activity and gene expression, malondialdehyde, superoxide dismutase (SOD), catalase and reduced glutathione (GSH) were evaluated as well as kidney tissue histology and ultrastructure. Diabetes caused glomerular damage and modulation of blood and tissue levels of creatinine, glucose, HbA1c, malondialdehyde, NKA activity and gene expression, SOD, catalase and GSH, which were significantly (p<0.05) treated with AS, insulin, and insulin plus AS. However, AS+insulin treatments were more effective. In conclusion, combined administration of AS with insulin to rats with DN decreased NKA activity and gene expression as well as oxidative stress, and improved glycemic state and renal structure and function.


Este estudio evaluó los efectos de Acacia senegal (AS) combinada con insulina sobre la actividad Na+/K+- ATPasa (NKA) y la expresión de ARNm, la glucosa sérica, la función renal y el estrés oxidativo en un modelo de nefropatía diabética (ND) en ratas. Sesenta ratas se dividieron equitativamente en seis grupos: control normal, normal+AS, diabética (DM), DM+insulina, DM+AS y DM+insulina+AS. La diabetes mellitus (tipo 1) se indujo mediante una única inyección de estreptozotocina (65 mg/kg), y los tratamientos con insulina y AS se llevaron a cabo hasta que las ratas fueron sacrificadas al final de la semana 12. Se midieron niveles séricos de glucosa y creatinina, hemoglobina A1c (HbA1c). Se evaluaron los niveles de homogeneizado renal de actividad NKA y expresión génica, malondialdehído, superóxido dismutasa (SOD), catalasa y glutatión reducido (GSH), así como la histología y ultraestructura del tejido renal. La diabetes causó daño glomerular y modulación de los niveles sanguíneos y tisulares de creatinina, glucosa, HbA1c, malondialdehído, actividad y expresión génica de NKA, SOD, catalasa y GSH, los cuales fueron tratados significativamente (p<0,05) con AS, insulina e insulina más AS. Sin embargo, los tratamientos con AS+insulina fueron más efectivos. En conclusión, la administración combinada de AS con insulina a ratas con DN disminuyó la actividad de NKA y la expresión genética, así como el estrés oxidativo, y mejoró el estado glucémico y la estructura y función renal.


Sujets)
Animaux , Mâle , Rats , Extraits de plantes/administration et posologie , Sodium-Potassium-Exchanging ATPase/effets des médicaments et des substances chimiques , Néphropathies diabétiques/traitement médicamenteux , Acacia/composition chimique , Superoxide dismutase , Hémoglobine glyquée/analyse , Extraits de plantes/pharmacologie , Expression des gènes , Rat Sprague-Dawley , Sodium-Potassium-Exchanging ATPase/génétique , Stress oxydatif , Microscopie électronique à transmission , Modèles animaux de maladie humaine , Association de médicaments , Régulation de la glycémie , Insuline/administration et posologie , Rein/effets des médicaments et des substances chimiques , Malonaldéhyde
5.
Int. j. morphol ; 42(1): 127-136, feb. 2024. ilus
Article Dans Anglais | LILACS | ID: biblio-1528822

Résumé

SUMMARY: The objective of this study was to investigate the therapeutic wound healing potential and molecular mechanisms of shikonin as small molecules in vitro. A mouse burn model was used to explore the potential therapeutic effect of shikonin; we traced proliferating cells in vivo to locate the active area of skin cell proliferation. Through the results of conventional pathological staining, we found that shikonin has a good effect on the treatment of burned skin and promoted the normal distribution of skin keratin at the damaged site. At the same time, shikonin also promoted the proliferation of skin cells at the damaged site; importantly, we found a significant increase in the number of fibroblasts at the damaged site treated with shikonin. Most importantly, shikonin promotes fibroblasts to repair skin wounds by regulating the PI3K/AKT signaling pathway. This study shows that shikonin can effectively promote the proliferation of skin cell, and local injection of fibroblasts in burned skin can play a certain therapeutic role.


El objetivo de este trabajo fue investigar el potencial terapéutico de cicatrización de heridas y los mecanismos moleculares de la shikonina como moléculas pequeñas in vitro. Se utilizó un modelo de quemaduras en ratones para explorar el posible efecto terapéutico de la shikonina; Rastreamos las células en proliferación in vivo para localizar el área activa de proliferación de células de la piel. A través de los resultados de la tinción para patología convencional, encontramos que la shikonina tiene un buen efecto en el tratamiento de la piel quemada y promueve la distribución normal de la queratina de la piel en el sitio dañado. Al mismo tiempo, la shikonina también promovió la proliferación de células de la piel en el sitio dañado. Es importante destacar que encontramos un aumento significativo en la cantidad de fibroblastos en el sitio dañado tratado con shikonina. Lo más importante es que la shikonina promueve la función reparadora de fibroblastos en las heridas de la piel regulando la vía de señalización PI3K/ AKT. Este estudio muestra que la shikonina puede promover eficazmente la proliferación de células de la piel y que la inyección local de fibroblastos en la piel quemada puede desempeñar un cierto papel terapéutico.


Sujets)
Animaux , Souris , Cicatrisation de plaie/effets des médicaments et des substances chimiques , Brûlures/traitement médicamenteux , Naphtoquinones/administration et posologie , Peau , Techniques in vitro , Naphtoquinones/pharmacologie , Phosphatidylinositol 3-kinases , Prolifération cellulaire/effets des médicaments et des substances chimiques , Modèles animaux de maladie humaine , Protéines proto-oncogènes c-akt , Fibroblastes , Souris de lignée C57BL
6.
Herald of Medicine ; (12): 161-166, 2024.
Article Dans Chinois | WPRIM | ID: wpr-1023693

Résumé

Objective To study the protective effect of Wedelolactone(WEL)against inflammatory injury in human umbilical vein endothelial cells(HUVECs)and its molecular mechanism by inducing PI3K/Akt/mTOR.Methods The model of atherosclerosis(AS)oxidative stress injury in HUVECs was induced with 200 μmol·L-1 of hydrogen peroxide for 24 h.The experimental groups were as follows:normal control group,DMSO(dimethyl sulfoxide)group,H2O2 group,and WEL group.MTT was used to measure the cell survival rate of each group;flow cytometry was used to assess intracellular ROS levels;fluorescence microscopy was used to detect the expression of p62 protein;immunoblotting assay was used to determine the protein expression levels for apoptosis-related proteins associated with PI3K/Akt/mTOR signaling pathway and autophagy-related proteins.Results Compared with the H2 O2 group,the HUVEC cell survival rate was significantly inhibited in the WEL group(P<0.05).ROS production was significantly lower,and the protein expressions of SOD1 and p62 were significantly increased in the WEL group as compared to the hydrogen peroxide group.The protein expression of p-mTOR,p-Akt,and p-PI3K was significantly decreased in hydrogen peroxide(P<0.01);In the WEL experiment,p-mTOR,p-Akt,and p-PI3K were increased significantly in the post-injury HUVECs(P<0.01).Conclusion Wedelolactone inhibits HUVECs'autophagy by suppressing H2O2-induced inflammatory damage in HUVECs,which may be related to the fact that WEL promotes the phosphorylation of PI3K,Akt,and mTOR proteins,inhibits autophagy and thus resists oxidative stress damage in HUVECs cells.

7.
Article Dans Chinois | WPRIM | ID: wpr-1023857

Résumé

AIM:To observe how total flavonoids of Pterocarya hupehensis Skan(PHSTF)affects the migra-tion and invasion of human rheumatoid fibroblast-like synoviocyte line MH7A.METHODS:The MH7A cells were divided into control group(without any treatment),low-,medium-and high-dose(6.25,12.5 and 25 mg/L,respectively)PHSTF groups,phosphatidylinositol 3-kinase(PI3K)inhibitor 740Y-P(10 μmol/L)group,and 740Y-P(10 μmol/L)+high-dose(25 mg/L)PHSTF group.The viability of the MH7A cells was determined by CCK-8 assay,while the migration and inva-sion were assessed by scratch and Transwell assays.The protein levels of matrix metalloproteinase-2(MMP-2),MMP-9,PI3K,p-PI3K,AKT and p-AKT were detected by Western blot.RESULTS:Compared with control group,the cell via-bility in PHSTF treatment groups was reduced(P<0.05),the cell wound healing area was significantly decreased(P<0.01),migratory and invasive cells in the lower chamber were significantly reduced(P<0.01),and the protein expres-sion of MMP-2 and MMP-9 and the ratios of p-PI3K/PI3K and pAKT/AKT were decreased(P<0.01).Compared with high-dose PHSTF group,the addition of PI3K/AKT pathway agonist 740Y-P significantly increased the migration and invasion ability of MH7A cells(P<0.01)and elevated the protein expression of MMP-2 and MMP-9 and the ratios of p-PI3K/PI3K and pAKT/AKT(P<0.01)under the treatment with PHSTF.CONCLUSION:Total flavonoids of Pterocarya hupehensis Skan could inhibit the migration and invasion of MH7A cells by regulating the PI3K/AKT signaling pathway.

8.
Article Dans Chinois | WPRIM | ID: wpr-1023890

Résumé

AIM:To investigate the effect of doublecortin-like kinase 1(DCLK1)on the biological properties of gastric cancer stem cells,and to explore its possible mechanism.METHODS:Serum-free suspension culture of gastric cancer stem cells and targeted inhibition of DCLK1 activity in gastric cancer stem cells with DCLK1 inhibitor DCLK1-IN-1 were performed.The expression levels of DCLK1,stemness-related proteins(SOX2 and OCT4),proliferation-related pro-teins(cyclin D1 and c-MYC),drug resistance-related proteins(ABCG2 and TOP2A),epithelial-mesenchymal transition-related proteins(E-cadherin,vimentin and Snail),and PI3K/AKT/mTOR signaling pathway-related proteins in gastric cancer stem cells were examined by Western blot.The effects of DCLK1 on viability and drug resistance of gastric cancer stem cells were determined by CCK-8 assay,and the effects of DCLK1 on self-renewal of gastric cancer stem cells were de-termined by methylcellulose spheroid-forming assay.Wound-healing and Transwell assays were performed to assess the ef-fect of DCLK1 on the migration and invasion of gastric cancer stem cells.RESULTS:The expression levels of DCLK1 and stemness-related proteins SOX2 and OCT4 in gastric cancer stem cells were significantly higher than those in parental cells(P<0.01).The proliferation,drug resistance,migration and invasion of gastric cancer stem cells in DCLK1 inhibi-tion group were significantly lower than those in Sphere cell group(P<0.01).The expression levels of proliferation-related proteins(c-MYC and cyclin D1)and drug resistance-related proteins(TOP2A and ABCG2)were down-regulated,the ex-pression of epithelial marker E-cadherin was up-regulated,the expression of mesenchymal markers vimentin and Snail was down-regulated,and the expression levels of PI3K/AKT/mTOR signaling pathway-related proteins and their phosphoryla-tion levels were reduced in DCLK1 inhibition group(P<0.05).CONCLUSION:DCLK1 is highly expressed in gastric cancer stem cells,which may be involved in the proliferation,drug resistance and invasion of gastric cancer stem cells by regulating PI3K/AKT/mTOR signaling pathway.It suggests that DCLK1 can be used as a potential target for gastric cancer stem cells.

9.
Article Dans Chinois | WPRIM | ID: wpr-1024327

Résumé

Objective To explore whether ferulic acid can inhibit the progression of T-cell acute lymphoblastic leukemia in vivo and in vitro by regulating PTEN/PI3K/AKT signaling pathway.Methods The T-cell acute lymphoblastic leukemia Jurkat cells were divided into the control group,the ferulic acid treatment group and the LY294002 treatment group for in vitro experiment.The cells in the control group were given normal culture;cells in the ferulic acid treatment group were given different concentrations(1.25,2.5,5,10,20,40,80,160 μmol/L)of ferulic acid,respectively,and the cell proliferation was detected by CCK-8 method,to screen the experimental concentration;cells in the LY294002 treatment group were given 50 μmol/L PI3K/AKT inhibitor LY294002.The cells proliferation,apoptosis and invasion were detected by clone formation assay,flow cytometry and Transwell assay.The relative expression levels of nuclear protein Ki67,proliferating cell nuclear antigen(PCNA),cleaved caspase-3,cleaved caspase-9,E-cadherin,N-cadherin,Vimentin,PTEN,p-PI3K,PI3K,p-AKT and AKT proteins were detected by Western blot.The nude mice models of transplanted tumors were constructed by 30 male BALB/c nude mice,and they were averagely divided into the normal group and the ferulic acid treatment group for in vivo experiment.The normal group was given normal saline by gavage,while the ferulic acid treatment group was given 75 mg/kg ferulic acid by gavage after inoculating Jurkat cells.The weight and volume changes of transplanted tumors were compared,and the levels of Ki67,cleaved caspase-3/caspase-3,E-cadherin,N-cadherin,PTEN,p-PI3K,PI3K,p-AKT and AKT in tumor tissues were detected.Results In vitro experiment,compared with the control group,the clone formation rate of cells,number of invasion cells,Ki67,PCNA,N-cadherin,Vimentin,p-PI3K/PI3K and p-AKT/AKT in the 5,10,20 μmol/L ferulic acid treatment group and the LY294002 treatment group were significantly decreased(P<0.05),while the apoptosis rate,cleaved caspase-3/caspase-3,cleaved caspase-9/caspase-9,E-cadherin and PTEN were significantly increased(P<0.05).In vivo experiment,compared with the normal group,the weight and volume of tumors were reduced in the ferulic acid treatment group,Ki67,N-cadherin,p-PI3K/PI3K and p-AKT/AKT in tumor tissues were significantly decreased,cleaved caspase-3/caspase-3,E-cadherin and PTEN were significantly increased,with statistically significant differences(P<0.05).Conclusion Ferulic acid can inhibit the proliferation and invasion of T-cell acute lymphoblastic leukemia Jurkat cells in vivo and in vitro,and induce apoptosis,its mechanism may be related to the regulation of PTEN/PI3K/AKT signaling pathway.

10.
Article Dans Chinois | WPRIM | ID: wpr-1024328

Résumé

Objective To investigate the protective effect and mechanism of propofol on the blood-brain barrier in rats with cerebral ischemia.Methods A total of 48 10-week-old male SD rats were randomly divided into the sham group,the cerebral ischemia group,the propofol group and the propofol+LY294002 group.Twenty-four hours before the induction of the model,the rats in the propofol+LY294002 group were intracerebroventricularly injected with PI3K inhibitor LY294002(0.3 mg·kg-1),and the rats in the other groups were administrated with saline(10 μL).Rats in the cerebral ischemia group,the propofol group and the propofol+LY294002 group established cerebral ischemia models by carotid artery occlusion.Rats in the sham group only isolated the common carotid artery and ligated the external carotid artery without other treatment.During the modeling period,the rats in the propofol group and the propofol+LY294002 group were given propofol(10 mg·kg-1)via the tail vein,and the sham group and the propofol group were treated with saline.After 24 hours,the neurological function of rats was evaluated by Zea Longa method;the area of cerebral infarction was detected by TTC staining;the degree of cerebral edema was detected by the dry-wet weight method.EB tracer method was used to evaluate the integrity of the blood-brain barrier;ELISA was used to detect inflammatory cytokines in cerebrospinal fluid;Western blot was used to detect the expression of PI3K/AKT signaling pathway proteins and blood-brain barrier tight junction proteins Claudin-5 and Occludin.Results Cerebral ischemia led to the increase of neurological function scores and local infarction of brain tissues in rats.Compared with the sham group,the EB content in the brain tissue of rats in the cerebral ischemia group increased,the degree of brain edema increased,and the content of inflammatory cytokines in the cerebrospinal fluid increased.And the use of propofol could significantly decrease the neurological function scores,reduce the area of cerebral infarction,inhibit EB penetrating blood-brain barrier,reduce the degree of brain edema,reduce the release of inflammatory cytokines,and up-regulate the expression of PI3K/AKT signaling pathway proteins and tight junction proteins Claudin-5 and Occludin.LY294002 significantly reversed the above effects of propofol.Conclusion Propofol can maintain the expression of tight junction proteins Claudin-5 and Occludin through the PI3K/AKT signaling pathway,protect the structural and functional integrity of blood-brain barrier,reduce the degree of brain edema,prevent other inflammatory cytokines into the brain tissue,reduce cerebral infarction,and alleviate the neurological functional damage caused by cerebral ischemia.

11.
Chinese Journal of Immunology ; (12): 519-523, 2024.
Article Dans Chinois | WPRIM | ID: wpr-1024756

Résumé

Objective:To explore effect and molecular mechanism of transcription factor SP1 on apoptosis and inflammatory response of diabetic retinopathy(DR).Methods:To construct a DR model of human retinal microvascular endothelial cells(hRMECs),cells were divided into Control group,HG group,HG+si-NC group,HG+si-SP1 group,HG+si-SP1+oe-NC group and HG+si-SP1+oe-MAP3K1 group by transfection.RT-qPCR was used to detect expressions of SP1 and MAP3K1;flow cytometry was used to detect cell apoptosis;ELISA was used to detect contents of inflammatory factors TNF-α,IL-1β and IL-6 in cells;binding site between SP1 and MAP3K1 promoter were found by bioinformatics,and ChIP-qPCR was used to detect binding of SP1 to the MAP3K1 promoter.Results:Compared with control group,expressions of SP1 and MAP3K1 in hRMECs treated with HG were increased(P<0.05).Inhibition of SP1 expression,apoptosis rate was significantly decreased(P<0.05),and contents of inflammatory factors TNF-α,IL-1β and IL-6 were significantly decreased(P<0.05).Inhibition of SP1 reduced expression of MAP3K1.Further overexpression of MAP3K1 reversed inhibitory effect of si-SP1 on HG-induced apoptosis and inflammatory responses in hRMECs.Conclusion:Transcription factor SP1 promotes apoptosis and inflammatory response of DR cells by promoting expression of MAP3K1.

12.
Article Dans Chinois | WPRIM | ID: wpr-1025109

Résumé

Objective To investigate the effect and mechanism of osteopontin(OPN)in hepatoma cell migration through galectin-3 binding protein(LGALS3BP).Methods Human hepatoma cell lines SMMC-7721,SMMC-P(stably transfected with empty eukaryotic expression vectors),and SMMC-OPN(stably transfected with the OPN gene)were cultured.mRNA expression levels of OPN and LGALS3BP were measured by RT-qPCR.Western blot assays were used to analyze the relative protein expression of OPN and LGALS3BP and PI3K/AKT pathway.Wound healing assays were performed to explore the cell migration ability.After transfection with LGALS3BP-targeting small interfering RNA(si-LGALS3BP)or negative control small RNA(si-NC)into SMMC-OPN cells,cell migration and relative expression of PI3K/AKT pathway-related proteins were assessed.Results Compared with SMMC-7721 and SMMC-P,the migratory ability of SMMC-OPN cells was significantly reinforced,and expression of LGALS3BP was obviously upregulated at both mRNA and protein levels.Moreover,relative expression of p-PI3K/PI3K and p-AKT/AKT proteins was significantly increased.Wound healing assays showed that the si-LGALS3BP obviously suppressed the migratory ability of SMMC-OPN cells.Furthermore,relative expression of p-PI3K/PI3K and p-AKT/AKT proteins in SMMC-OPN cells was significantly decreased after transfection of si-LGALS3BP.Conclusions OPN activates the PI3K/AKT pathway by upregulating LGALS3BP expression to promote hepatoma cell migration.

13.
Chinese Health Economics ; (12): 34-36, 2024.
Article Dans Chinois | WPRIM | ID: wpr-1025240

Résumé

Objective:To explore a solution for the construction of the CCI index with an example of cerebral infarction to provide a guide for adjusting the policy of Diagnosis-Intervention Packet.Methods:Lasso regression was used to screen for comorbidities to construct the model,K-means clustering was used for case severity categorization.CCI indices were calculated as one plus the sum of standardized regression coefficients.Results:According to the analysis,five key variables were found,including other disorders of the lungs,non-insulin-dependent diabetes mellitus with ketoacidosis,systemic inflammatory response syndrome of non-infectious etiology with organ failure,acute duodenal ulcer with bleeding,and chronic obstructive pulmonary disease with acute lower respiratory tract in-fection,with CCI indices of 1,1,1.026,1.034,and 1.101.Simulated calculation's result showed a decrease in medical insurance pay-ment losses after applying CCI indices.Conclusion:The CCI index construction scheme based on Lasso regression and K-means clus-tering is reasonable and effective.

14.
Article Dans Chinois | WPRIM | ID: wpr-1025407

Résumé

Objective:To explore the mechanism of miR-30e-5p inhibiting the invasion and migration of hepatoma cells by targeting phosphoinositide-3-kinase catalytic delta polypeptide(PIK3CD)-mediated phosphoinositide 3-kinase(PI3K)/protein kinase B(AKT)/mammalian target of the rapamycin(mTOR)signaling pathway.Methods:HepG2 cells were divided into control group,miR-30e-5p mimics group,PIK3CD knockdown group,negative control group,and miR-30e-5p mimics+PIK3CD overexpression group by transfecting the corresponding plasmids,the expression of miR-30e-5p,PIK3CD and PI3K/AKT/mTOR signaling pathway was detected by qRT-PCR and Western blot;the proliferation rate of Hep G2 cells in each group was detected by CCK-8 method;cell migration and invasion were measured by cell scratch test and Transwell test;the expression of matrix metalloproteinase(MMP)2,MMP9,E-cadherin,N-cadherin,Vimentin in Hep G2 cells of each group were detected by Western blot.The targeting regulation of miR-30e-5p on PIK3CD in Hep G2 cells was detected by double luciferase report assay.Results:Compared with the control group,the proliferation rate,migration rate,invasion number,the expression of N-cadherin,MMP2 and MMP9 proteins,the expression of PIK3CD protein and mRNA,p-P13K/PI3K,p-AKT/AKT,and p-mTOR/mTOR in the miR-30e-5p mimics group and PIK3CD knockdown group were lower(P<0.05),the expression of E-cadherin protein was higher(P<0.05).Overexpression of PIK3CD attenuates the inhibitory effects of miR-30e-5p mimics on proliferation,migration and invasion of hepatocellular carcinoma cells and elevates the expression of PI3K/AKT/mTOR pathway-related proteins;miR-30e-5p targets down-regulation of PIK3CD expression.Conclusion:Up-regulation of miR-30e-5p can prevent PI3K/AKT/mTOR signal activation by decreasing the expression of PIK3CD,thereby inhibiting the proliferation,migration and invasion of hepatocellular carcinoma cells.

15.
Article Dans Chinois | WPRIM | ID: wpr-1025853

Résumé

OBJECTIVE To investigate the activation of xanthine oxidase(XO)from the human liver by vitamin K3 and the mechanism.METHODS Using human liver S9(0.1 g·L-1)as the source,XO was incubated with substrate xanthine of 0,2,4,8,and 16 μmol·L-1 at 37℃ for 90 min.The Michaelis constant(Km)of the reaction of xanthine oxidation was determined using the liquid chromatography diode array method.At the concentration of Km,the three-point method(1,10 and 100 μmol·L-1)was used to detect the activity of vitamin K3 activators.The multi-point method(vitamin K3 1,2,5,10,20,50,100,200 and 400 μmol·L-1)was adopted to determine the half effective concentration(EC50)of activated XO.Kinetic parameters(Km and Vmax)and the fit of double reciprocal curves were determined via vitamin K3 of 1/2EC50,EC50 and 2EC50.The changes in kinetic behavior at different concentrations of vitamin K3 were observed and their types of activation were analyzed.The interactions between XO and activator vitamin K3 were explored via molecular docking.RESULTS The Km of XO-mediated xanthine oxidation reac-tion was 4.71 μmol·L-1.As an activator of this reaction,vitamin K3 activated XO in a concentration-dependent manner(according to the logistic fitting formula y=A2+(A1-A2)/(1+(x/x0)

16.
Article Dans Chinois | WPRIM | ID: wpr-1026843

Résumé

Objective To explore the molecular mechanism of Xiaojin Pills in the treatment of breast cancer using an integrated network pharmacology and experimental verification.Methods The chemical components and potential targets of Xiaojin Pills were obtained from TCMSP,TCM-ID,ETCM and SwissTargetPrediction databases.Breast cancer related targets were collected from GeneCards,OMIM and KEGG databases.The overlapped targets were imported into STRING database to analysis a protein-protein interaction(PPI).The key targets of PPI networks were screened based on node topology parameter values through Cytoscape 3.8.0.DAVID database was used to analyze the GO and KEGG pathway enrichment to build drug-chemical components-key targets-signaling pathway network.The breast cancer cell lines MDA-MB-231 and SK-BR-3 were used to study the effects of Xiaojin Pills extract on cell apoptosis,migration and invasion,and to verify the key pathway obtained by enrichment analysis.Results Totally 181 chemical components in Xiaojin Pills were obtained,including quercetin,myricetin,pinocembrin and β-sitosterol.615 potential targets were identified for the anti-breast cancer effects of Xiaojin Pills.After overlapping,170 key targets against breast cancer were identified based on the topological analysis,which included SRC,ERK1/2,AKT1,EGFR,etc.KEGG analysis enriched pathways including pathways in cancer,MAPK signaling pathway,endocrine resistance,PI3K-AKT signaling pathway,EGFR tyrosine kinase inhibitor resistance,apoptosis,and HIF-1 signaling pathway,which may play important roles in the therapeutic effects of Xiaojin Pills against breast cancer.GO enrichment was involved in protein phosphorylation,inflammatory response,negative regulation of apoptosis,and positive regulation of ERK1 and ERK2 cascades.Cell experiments showed that Xiaojin Pills further induced mitochondria-dependent apoptosis by inhibiting the activation of MAPK and PI3K-AKT pathways.At the same time,the expressions of ZO-1 and β-catenin increased,and the epithelial-mesenchymal transformation process was reversed to inhibit the metastasis of breast cancer cells.Conclusion The key targets and signaling pathways of Xiaojin Pills in the treatment of breast cancer are studied through network pharmacology combined with in vitro experiments,which provided a basis for further study of its pharmacodynamic material basis,mechanism of action and clinical application.

17.
Article Dans Chinois | WPRIM | ID: wpr-1026867

Résumé

Ulcerative colitis(UC)is a common disease of the digestive system.Phosphatidylinositol-3-kinase(PI3K)/synuclein/threonine kinase(AKT)is closely related to cell survival,apoptosis,inflammation and other biological processes,and the expression levels of PI3K and AKT significantly increase during the course of UC,with accelerated apoptosis,improved inflammation,and damaged intestinal mucosal barrier function.In recent years,a large number of basic and clinical trials have been conducted on PI3K/AKT signaling pathway in TCM,and the results indicate that PI3K/AKT signaling pathway is expected to be an important potential target for UC treatment.This article analyzed the mechanism of the regulation of PI3K/AKT signaling pathway in TCM from monomer,extract,compound and acupuncture,and suggested that the regulation of this signaling pathway is of great significance for the prevention and treatment of UC,and provide reference for drug development.

18.
Article Dans Chinois | WPRIM | ID: wpr-1026907

Résumé

Objective To explore the potential mechanism underlying the treatment of pediatric asthma using Xiaoer Zhixiao Pingchuan Granules through network pharmacology analysis and animal experimental validation.Methods Active components and their associated targets in Xiaoer Zhixiao Pingchuan Granules were identified through screening and retrieval of TCMSP,BATMAN-TCM,and UniProt databases.Disease-related targets for pediatric asthma were selected from GeneCards,DisGeNET,and OMIM databases.The target protein-protein interaction(PPI)relationship between the intersecting targets of the two was obtained through the STRING database,and import it into Cytoscape 3.8.0 software to construct a PPI network.GO and KEGG enrichment analyses were conducted using the Metascape platform to identify potential pathways.An asthmatic mouse model was induced by ovalbumin,and different concentrations of Xiaoer Zhixiao Pingchuan Granules were administered as interventions.Histopathological changes were evaluated using HE staining and PAS staining,and the network pharmacology findings were validated through Western blot analysis.Results A total of 154 active ingredients targeting 283 pediatric asthma-related genes were identified in Xiaoer Zhixiao Pingchuan Granules.KEGG enrichment analyses revealed significant enrichment of signaling pathways such as the PI3K-Akt signaling pathway,TNF signaling pathway,and MAPK signaling pathway among intersection targets.Thirteen key targets were identified through topological analysis of ingredients-targets-pathways network.Animal experiments demonstrated that Xiaoer Zhixiao Pingchuan Granules significantly alleviated ovalbumin-induced airway inflammation and goblet cell hyperplasia,while downregulating the expression of key proteins in the PI3K-Akt signaling pathway(P<0.05).Conclusion The therapeutic efficacy of Xiaoer Zhixiao Pingchuan Granules in pediatric asthma involves a multi-pathway and multi-target mechanism,with the PI3K-Akt signaling pathway emerging as a potential key molecular target.

19.
Article Dans Chinois | WPRIM | ID: wpr-1026917

Résumé

Objective To investigate the effects of abdominal tuina on the expression of PI3K and N-methyl-D-aspartate receptor(NMDAR)subunit NR1 in spinal dorsal horn and the morphology of spinal dorsal horn neurons in ulcerative colitis(UC)rats;To explore its mechanism of action in treating UC.Methods Totally 36 SD rats were randomly divided into normal group,model group,abdominal tuina group,mesalazine group,PI3K stimulation group and PI3K stimulation + abdominal tuina group,with 6 rats in each group.The UC model in rats was simulated by drinking dextran sulfate solution freely.The abdominal tuina group and the PI3K stimulation + abdominal tuina group were given abdominal tuina intervention,the mesalazine group was given mesalazine solution for gavage,and the PI3K stimulation group and PI3K stimulation + abdominal tuina group were given intrathecal injection of PI3K agonist,once a day,for consecutive 15 days.Abdominal withdrawal reflex(AWR)score and acetic acid twist were used to observe the abdominal pain symptoms in rats.The expression of PI3K and NR1 in spinal dorsal horn were detected by immunofluorescence staining and Western blot,and the morphological changes of spinal dorsal horn neurons were observed by Nissl staining.Results Compared with the normal group,AWR score and twisting times of rats in model group significantly increased(P<0.01),the expression of PI3K and NR1 protein in spinal dorsal horn significantly increased(P<0.05,P<0.01),the morphology of spinal dorsal horn neurons was disordered,forming a large number of vacuolar like structures,and the Nissl body structure was fuzzy and incomplete.Compared with the model group,AWR scores and twisting times of abdominal tuina group and mesalazine group significantly decreased(P<0.05,P<0.01),and the expression of PI3K and NR1 protein significantly decreased(P<0.05,P<0.01),the edema of spinal dorsal horn neurons was milder,with fewer vacuolar changes and an increase in the number of Nissl bodies;AWR scores and twisting times of PI3K stimulation group and PI3K stimulation + abdominal tuina group significantly increased(P<0.05,P<0.01),and the expressions of PI3K and NR1 protein increased(P<0.05,P<0.01),a large number of neurons underwent pyknosis and necrosis,and the number of Nissl bodies decreased,even dissolving and disappearing.Conclusion Abdominal tuina can effectively improve the symptoms of abdominal pain in UC model rats,and its mechanism may be related to inhibiting the expression of PI3K and NR1 in spinal dorsal horn and improving the morphology of spinal dorsal horn neurons.

20.
Article Dans Chinois | WPRIM | ID: wpr-1028735

Résumé

AIM To investigate the effects of diosgenin on autophagy of human osteosarcoma cells.METHODS Human osteosarcoma MG63 and U2OS cells with or without exposure to diosgenin had their proliferation detected by MTT assay,their ultrastructure observed by transmission electron microscopy,their expression of autophagy protein Beclin1 observed by immunofluorescence staining,and their expressions of autophagy molecular markers LC3,Beclin1 and PI3K/Akt/mTOR signaling pathway related proteins detected by Western blot.The MG63 and U2OS cells cotreated with diosgenin and PI3K pathway inhibitor LY294002 had the expression of Beclin1 mRNA detected by RT-qPCR.The MG63 and U2OS cells cotreated with autophagy inhibitor 3-methyladenine(3-MA)had their inhibition rate of proliferation detected by MTT assay,their expression of cleaved-caspase3 protein detected by Western blot,and their expression of caspase3 mRNA detected by RT-qPCR.RESULTS Upon osteosarcoma MG63 and U2OS cells,diosgenin inhibited their proliferation,promoted the generation of autophagosomes,increased the protein expression of LC3 Ⅱ and Beclin1(P<0.05,P<0.01),reduced the protein expression of LC3 I(P<0.01),and inhibited the protein phosphorylation level of PI3K/Akt/mTOR pathway(P<0.05,P<0.01),whose effects were offset by the intervention with autophagy inhibitors in terms of the reduced proliferation inhibition and down-regulated expressions of caspase3 mRNA and cleaved-caspase3 protein(P<0.01).CONCLUSION Diosgenin can inhibit the proliferation of osteosarcoma cells and induce their autophagy leading to their death and autophagy apoptosis,which may be related to the activation of PI3K/Akt/mTOR signaling pathway and up-regulation of the expression of LC3 Ⅱ and Beclin1 proteins.

SÉLECTION CITATIONS
Détails de la recherche