Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 3 de 3
Filtre
Ajouter des filtres








Gamme d'année
1.
Asian Pacific Journal of Tropical Biomedicine ; (12): 748-755, 2015.
Article Dans Chinois | WPRIM | ID: wpr-950861

Résumé

Objective: To isolate and investigate antioxidant and α-glucosidase inhibitor compounds in the leaves of Quercus gilva Blume (Q. gilva). Methods: Dry leaves of Q. gilva were extracted with methanol and the methanolic extract was further separated by silica gel column chromatography using several solvents with increasing polarity. The antioxidant activities of the isolated compounds were evaluated using various in vitro assays: 1,1-diphenyl-2-picrylhydrazyl radical scavenging activity, hydrogen peroxide radical scavenging activity, β-carotene bleaching assay, and reducing power assay. The α-glucosidase inhibitory assay was conducted against α-glucosidase from Saccharomyces cerevisiae. Results: Three compounds were isolated and their structures were identified as catechin (1), epicatechin (2), and tiliroside (3) using an instrumental analysis. Compound 2 had higher antioxidant activity with inhibitory concentrations (IC

2.
Asian Pacific Journal of Tropical Biomedicine ; (12): 722-728, 2015.
Article Dans Chinois | WPRIM | ID: wpr-672659

Résumé

To isolate and investigate antioxidant and α-glucosidase inhibitor compounds in the leaves of Quercus gilva Blume (Q. gilva). Methods: Dry leaves of Q. gilva were extracted with methanol and the methanolic extract was further separated by silica gel column chromatography using several solvents with increasing polarity. The antioxidant activities of the isolated compounds were evaluated using various in vitro assays: 1,1-diphenyl-2-picrylhydrazyl radical scavenging activity, hydrogen peroxide radical scavenging activity, β-carotene bleaching assay, and reducing power assay. The α-glucosidase inhibitory assay was conducted against α-glucosidase from Saccharomyces cerevisiae. Results: Three compounds were isolated and their structures were identified as catechin (1), epicatechin (2), and tiliroside (3) using an instrumental analysis. Compound 2 had higher antioxidant activity with inhibitory concentrations (IC50) of (22.55 ± 2.23) μmol/L than that of quercetin, which was used as the standard, with an IC50 of (28.08 ± 2.39) μmol/L, followed by compound 1 with IC50 of (40.86 ± 3.45) μmol/L. On the other hand, compound 3 had the lowest antioxidant activity with an IC50 of (160.24 ± 8.15) μmol/L. However, compound 3 had the highest α-glucosidase inhibitory activity with an IC50 of (28.36 ± 0.11) μmol/L, followed by compounds 1 and 2 with (168.60 ± 5.15) and (920.60 ± 10.10) μmol/L, respectively. Conclusions: The results obtained for the antioxidant activities and α-glucosidase inhibitory activities in a methanolic extract from the leaves of Q. gilva confirmed the potential of this plant as a source of natural antioxidants and antidiabetic medicine.

3.
Journal of Korean Neurosurgical Society ; : 511-520, 1986.
Article Dans Coréen | WPRIM | ID: wpr-101871

Résumé

The effect of indomethacin on Na-K-ATPase and K-pNPPase activity was studied with rat brain homogenate. The results were as follows : 1) Indomethacin inhibited both Na-K-ATPase and K-pNPPase in a dose-related pattern. 2) Inhibition mode of indomethacin for K+ in both Na-K-ATPase and K-pNPPase was competitive type. 3) Indomethacin showed stimulative effect at lower sodium concentration below 10mM, and showed inhibitory effect at higher sodium concentration on Na-K-ATPase and K-pNPPase activity, and the inhibitory effect was slightly increased with increasing concentration of sodium. 4) The inhibitory effect of indomethacin on Na-K-ATPase activity was increased with increasing ATP concentration, but was not affected by Mg++ concentration. These results indicate that indomethacin inhibits Na-K-ATPase activity by inhibiting K+- dependent dephosphorylation steps.


Sujets)
Animaux , Rats , Adénosine triphosphate , Encéphale , Indométacine , Sodium
SÉLECTION CITATIONS
Détails de la recherche