Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 840
Filtre
1.
Acta Pharmaceutica Sinica ; (12): 279-288, 2024.
Article Dans Chinois | WPRIM | ID: wpr-1016653

Résumé

The outer membrane composed predominantly of lipopolysaccharide (LPS) is an essential biological barrier for most Gram-negative (G-) bacteria. Lipopolysaccharide transport protein (Lpt) complex LptDE is responsible for the critical final stage of LPS transport and outer membrane assembly. The structure and function of LptDE are highly conserved in most G- bacteria but absent in mammalian cells, and thus LptDE complex is regarded as an attractive antibacterial target. In recent 10 years, the deciphering of the three-dimensional structure of LptDE protein facilities the drug discovery based on such "non-enzyme" proteins. Murepavadin, a peptidomimetic compound, was reported to be the first compound able to target LptD, enlightening a new class of antibacterial molecules with novel mechanisms of action. This article is devoted to summarize the molecular characteristics, structure-function of LptDE protein complex and review the development of murepavadin and related peptidomimetic compounds, in order to provide references for relevant researches.

2.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 159-168, 2024.
Article Dans Chinois | WPRIM | ID: wpr-1016475

Résumé

ObjectiveTo evaluate some properties of scutellarin-phospholipid complex nanoemulsion(SCU-PC-NE), such as release, cell uptake and tissue distribution, and to investigate its effect on ameliorating lipopolysaccharide(LPS)-induced vascular endothelial injury. MethodSCU-PC-NE was prepared by weighting SCU-PC, ethyl oleate, Kolliphor HS15, 1,2-propylene glycol(50, 400, 514.3, 85.7 mg), respectively. And the appearance of SCU-PC-NE was observed by transmission electron microscope, the average paticle size and Zeta potential were measured by nanopotential particle size analyzer. The cumulative release of SCU-PC-NE in vitro was measured by dynamic dialysis, thiazolyl blue(MTT) colorimetric assay was used to investigate the effect of SCU-PC-NE on the viability of human umbilical vein endothelial cells(HUVECs), the inverted fluorescence microscope and flow cytometry were used to investigate cell uptake of HUVECs by SCU-PC-NE in vitro using coumarin 6 as a fluorescent probe, the tissue distribution of DiR/SCU-PC-NE labeled by near infrared fluorescent dyes was obeserved by small animal in vivo imaging system. The inflammation injury model was established by co-incubation with LPS(1 mg·L-1) and HUVECs, the effect of SCU-PC-NE on the levels of interleukin(IL)-1β and IL-6 were determined by enzyme-linked immunosorbent assay(ELISA), 18 Kunming male mice were randomly divided into blank group, model group, blank preparation group(equivalent to high dose group), SCU group and SCU-PC-NE low and high dose groups(5, 10 mg·kg-1), 3 mice in each group, and the drug administration groups were administered once in the tail vein at the corresponding dose every 48 h, equal volume of normal saline was given to the blank group and the model group, and the drug was administered for 4 consecutive times. Except for the blank group, the endothelial inflammatory injury was induced by intraperitoneal injection of LPS(10 mg·kg-1) at 12 h before the last administration in each group. Hematoxylin-eosin(HE) staining was used to investigate the effect of SCU-PC-NE on the histopathological changes in the thoracic aorta of mice. ResultThe appearance of SCU-PC-NE displayed pale yellow milky light, mostly spherical with rounded appearance and relatively uniform particle size distribution, with the average particle size of 35.31 nm, Zeta potential of 7.23 mV, and the encapsulation efficiency of 75.24%. The cumulative release in vitro showed that SCU-PC-NE exhibited sustained release properties compared with SCU. The cell viability of SCU-PC-NE was >90% at a concentration range of 1.05-8.4 mg·L-1. The results of cellular uptake experiments showed that the cellular uptake ability of SCU-PC-NE was significantly enhanced when compared with the SCU group(P<0.01). Compared with normal mice, the results of tissue distribution showed that the fluorescence intensity of DiR/SCU-PC-NE was significantly enhanced in the spleen, kidney, brain and thoracic aorta of mice at different time points after intraperitoneal injection of LPS(P<0.05, P<0.01), especially in thoracic aorta. ELISA results showed that the levels of IL-1β and IL-6 in the model group were significantly increased when compared with the blank group(P<0.05, P<0.01), and compare with the model group, all administration groups significantly down-regulated IL-1β level, with the strongest effect in the SCU-PC-NE high-dose group(P<0.01), and all administration groups significantly down-regulated IL-6 level, with the strongest effect in the SCU-PC-NE low-dose group(P<0.05). Compare with the blank group, the results of HE staining showed that the endothelial cells were damaged, the elastic fibers were broken and arranged loosely in the model group, although similar vascular injury could be observed in the blank preparation group, SCU group and SCU-PC-NE low-dose group, the vascular endothelial damage was significantly reduced in the high-dose group of SCU-PC-NE, which had a better effect than that in the SCU group. ConclusionSCU-PC-NE can promote the uptake of drugs by endothelial cells and effectively enriched in the site of vascular endothelial injury caused by LPS, suggesting that it has a protective effect on vascular endothelial injury and is a good carrier of SCU.

3.
Chinese Pharmacological Bulletin ; (12): 243-248, 2024.
Article Dans Chinois | WPRIM | ID: wpr-1013587

Résumé

Aim To investigate the effect of colchicine on lipopolysaccharide (LPS) induced endothelial to mesenchymal transition (EndMT) in human umbilical vein vascular endothelial cells (HUVECs) and its related mechanisms. Methods The EndMT model was established by treating HUVECs with LPS. Cell proliferation rate was detected by CCK-8 assay, cytotoxicity was detected by LDH assay, and the optimal drug concentration was screened. The cells were divided into the normal control group, the normal control + colchicine (10 nmol • L) group, the LPS (10 mg • L) model group, and the LPS + colchicine (10 nmol • L) group. The morphologic changes of the cells were observed under an inverted microscope, the cell migration ability was detected by Transwell assay, and the ability of tube formation was analyzed by tube formation assay. The expression of endothelial markers (CD31/ VE-cadherin) and mesenchymal cell markers (a-SMA/FSP-1) were detected by Western blot. NF-KB inhibitor was used to detect the changes in related signaling pathways. Results CCK-8 and LDH experiments showed that 10 nmol • L colchicine was the optimal concentration. LPS could induce morphological changes in HUVECs, and colchicine could reverse morphological changes in HUVECs to a certain extent. Transwell experiment showed that the migration ability of HUVECs in the LPS treatment group was significantly enhanced (P < 0. 05), and colchicine could significantly reverse this phenomenon (P < 0. 05) . Tube formation experiment showed that LPS decreased the endothelial tube formation ability of HUVECs (P < 0. 05), while colchicine treatment markedly improved LPS-induced tube formation defects (P < 0. 05) . Western blot assay showed that after colchicine co-cultured with LPS, the expression levels of CD31 and VE-cadherin significantly increased compared with the model group (P < 0. 05), while the expression levels of a-SMA and FSP-1 significantly decreased compared with the model group (P < 0. 05) . During the induction of EndMT by LPS, colchicine could inhibit the activation of the NF-KB/Snail signaling pathway. Conclusions Colchicine can effectively inhibit EndMT induced by LPS, and the mechanism may be related to the regulation of the NF-KB/Snail signaling pathway.

4.
Journal of Prevention and Treatment for Stomatological Diseases ; (12): 257-265, 2024.
Article Dans Chinois | WPRIM | ID: wpr-1013086

Résumé

Objective@#To investigate the effects of PssL-NAC reactive oxygen species (ROS)-responsive nanoparticles on intracellular ROS production, inflammatory factor levels, collagen production, cell function and Toll-like receptor 4 (TLR4), NF-κB nuclear factor-κB (p65) pathway protein expression in human gingival fibroblasts (HGFs) induced by Porphyromonas gingivalis-lipopolysaccharide (P.g-LPS).@*Methods@#This study was reviewed and approved by the ethics committee. PssL-NAC microspheres containing oil soluble antioxidant N-acetylcysteine (NAC) were obtained by connecting the hydrophobic end of polycaprolactone (PCL) and the hydrophilic end of polyethylene glycol (PEG) via thioketal (TK) bonds in response to ROS, and self loading in the aqueous and oil phases. After preparation of the PssL-NAC microspheres and aqueous NAC solution, successful synthesis of the nanoparticles was verified by transmission electron microscopy. Then, HGFs were exposed to P.g-LPS (0, 5, or 10 μg/mL), P.g-LPS (0, 5, or 10 μg/mL)+NAC, and P.g-LPS (0, 5, or 10 μg/mL)+PssL-NAC, and the ROS levels in the different groups were observed under confocal microscopy to determine the concentration of P.g-LPS for use in subsequent experiments. The groups were as follows: control group (no treatment), P.g-LPS group (HGFs treated with P.g-LPS), NAC group (HGFs treated with P.g-LPS and NAC), and PssL-NAC group (HGFs treated with P.g-LPS and PssL-NAC). Cell counting kit-8 (CCK-8) assays verified the biosafety of PssL-NAC. The ROS levels in the different groups were detected by DCFH-DA probes and observed via confocal microscopy. Real-time qPCR (RT-qPCR) was used to monitor the gene expression levels of the intracellular inflammatory cytokines interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α), collagen 1 (COL1) and collagen 3 (COL3). The effect of PssL-NAC on the migration of HGFs was observed via the scratch test. The protein expression of TLR4-NF-κB, and phosphorylated p65 (p-p65) in the TLR4-NF-κB pathway was evaluated by Western blot.@*Results@#PssL-NAC had no significant effect on HGF proliferation (P>0.05). At elevated P.g-LPS concentrations, PssL-NAC maintained intracellular ROS levels approximately twice those in the control group (P<0.001). PssL-NAC significantly decreased P.g-LPS-induced IL-6 (P<0.001) and TNF-α (P<0.001) gene expression and increased COL1 gene expression (P<0.001). After P.g-LPS stimulation, PssL-NAC restored cell migration to the control level (P>0.05) and decreased the protein expression of TLR4 (P<0.001), p65 (P = 0.006), and p-p65 (P = 0.017) in the TLR4-NF-κB pathway.@*Conclusion@#PssL-NAC maintains the appropriate intracellular ROS concentration, alleviates P.g-LPS-induced inflammation in HGFs through the TLR4-NF-κB pathway, and restores the cell functions of collagen production and migration in an inflammatory environment.

5.
Biomedical and Environmental Sciences ; (12): 54-70, 2024.
Article Dans Anglais | WPRIM | ID: wpr-1007908

Résumé

OBJECTIVE@#The aim of this study is to explore the potential modulatory role of quercetin against Endotoxin or lipopolysaccharide (LPS) induced septic cardiac dysfunction.@*METHODS@#Specific pathogen-free chicken embryos ( n = 120) were allocated untreated control, phosphate buffer solution (PBS) vehicle, PBS with ethanol vehicle, LPS (500 ng/egg), LPS with quercetin treatment (10, 20, or 40 nmol/egg, respectively), Quercetin groups (10, 20, or 40 nmol/egg). Fifteen-day-old embryonated eggs were inoculated with abovementioned solutions via the allantoic cavity. At embryonic day 19, the hearts of the embryos were collected for histopathological examination, RNA extraction, real-time polymerase chain reaction, immunohistochemical investigations, and Western blotting.@*RESULTS@#They demonstrated that the heart presented inflammatory responses after LPS induction. The LPS-induced higher mRNA expressions of inflammation-related factors (TLR4, TNFα, MYD88, NF-κB1, IFNγ, IL-1β, IL-8, IL-6, IL-10, p38, MMP3, and MMP9) were blocked by quercetin with three dosages. Quercetin significantly decreased immunopositivity to TLR4 and MMP9 in the treatment group when compared with the LPS group. Quercetin significantly decreased protein expressions of TLR4, IFNγ, MMP3, and MMP9 when compared with the LPS group. Quercetin treatment prevented LPS-induced increase in the mRNA expression of Claudin 1 and ZO-1, and significantly decreased protein expression of claudin 1 when compared with the LPS group. Quercetin significantly downregulated autophagy-related gene expressions (PPARα, SGLT1, APOA4, AMPKα1, AMPKα2, ATG5, ATG7, Beclin-1, and LC3B) and programmed cell death (Fas, Bcl-2, CASP1, CASP12, CASP3, and RIPK1) after LPS induction. Quercetin significantly decreased immunopositivity to APOA4, AMPKα2, and LC3-II/LC3-I in the treatment group when compared with the LPS group. Quercetin significantly decreased protein expressions of AMPKα1, LC3-I, and LC3-II. Quercetin significantly decreased the protein expression to CASP1 and CASP3 by immunohistochemical investigation or Western blotting in treatment group when compared with LPS group.@*CONCLUSION@#Quercetin alleviates cardiac inflammation induced by LPS through modulating autophagy, programmed cell death, and myocardiocytes permeability.


Sujets)
Embryon de poulet , Animaux , Quercétine/usage thérapeutique , Lipopolysaccharides/toxicité , Matrix metalloproteinase 9 , Caspase-3 , Matrix metalloproteinase 3 , Récepteur de type Toll-4 , Claudine-1 , Inflammation/métabolisme , Apoptose , ARN messager , Autophagie , Facteur de transcription NF-kappa B
6.
China Pharmacy ; (12): 33-37, 2024.
Article Dans Chinois | WPRIM | ID: wpr-1005210

Résumé

OBJECTIVE To study the repair effect of ephedrine on lipopolysaccharide (LPS)-induced microglia function injury and its mechanism. METHODS Human microglia cells (HMC3) were used as research objects to investigate the effects of different concentrations of ephedrine (75, 150, 300, 600 μg/mL) on the viability and apoptosis of HMC3 cells. HMC3 cells were divided into control group (without drug intervention), LPS group (1 μg/mL), ephedrine group (1 μg/mL LPS+300 μg/mL ephedrine), BAY11-7082 group [1 μg/mL LPS+5 μmol/L nuclear factor-κB (NF-κB) pathway inhibitor BAY11-7082], inhibitor group (1 μg/mL LPS+300 μg/mL ephedrine+5 μmol/L BAY11-7082) and activator group (1 μg/mL LPS+300 μg/mL ephedrine+1 μmol/L NF-κB pathway activator Prostratin). After 24 hours of drug treatment, cell migration, the levels of soluble interleukin-6(sIL-6), interleukin-10(IL-10), superoxide dismutase(SOD)and malondialdehyde(MDA), and the expressions of NF-κB pathway-related proteins were all detected. RESULTS The viability of HMC3 cells could be increased significantly by 300 μg/mL ephedrine, while the apoptotic rate was decreased significantly (P<0.05). Compared with the control group, the number of migrating cells was increased significantly in the LPS group; the levels of sIL-6 and MDA, the phosphorylation of NF-κB protein were increased significantly, while the levels of IL-10 and SOD were decreased significantly (P<0.05). Compared with the LPS group, the above indexes were reversed significantly in the ephedrine group and BAY11-7082 group (P<0.05). Compared with the ephedrine group, the number of migrating cells was decreased significantly in the inhibitor group; the levels of sIL-6 and MDA, the phosphorylation of NF-κB protein were decreased significantly, while the levels of IL-10 and SOD were increased significantly (P<0.05). The above indexes were reversed significantly in the activator group (P<0.05)can repair cell injury by inhibiting LPS induced apoptosis, migration, inflammation and oxidant stress of HMC3 cells, the mechanism of which may be associated with inhibiting the activity of the NF-κB signaling pathway.

7.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 64-70, 2024.
Article Dans Chinois | WPRIM | ID: wpr-1003409

Résumé

ObjectiveTo explore the protective effect and mechanism of Zingiberis Rhizoma Recens alcohol extract on lipopolysaccharide (LPS)-induced acute lung injury in mice. MethodBalb/c mice were randomly divided into normal group, model group, dexamethasone group, and low- and high-dose Zingiberis Rhizoma Recens groups. Mice in the normal group were instilled with normal saline through the nose, and the other groups were instilled with normal saline containing LPS (50 μg). After 30 minutes of modeling, the dexamethasone group was gavaged with 5 mg·kg-1 of dexamethasone acetate solution, the low- and high-dose Zingiberis Rhizoma Recens groups were gavaged with different doses of (7, 14 g·kg-1) of Zingiberis Rhizoma Recens alcohol extract, and the normal group and the model group were gavaged with the same volume of water. After 24 hours of modeling, the total number of white blood cells in bronchoalceolar lavage fluid (BALF) was detected by cell counter, and the levels of the inflammatory factors including tumor necrosis factor (TNF)-α, interleukin (IL)-1β, IL-6, and superoxide dismutase (SOD), and myeloperoxidase (MPO) was detected by enzyme-linked immunosorbent assay (ELISA). Haematoxylin-eosin (HE) staining method was used to observe the pathological changes of lung tissue in each group, and the Western blot was used to detect the protein expression of nuclear transcription factor (NF)-κB p65, phosphorylation (p)-NF-κB p65, and Toll-like receptor 4 (TLR4) in lung tissue. ResultCompared with the normal group, the white blood cell count in BALF and the levels of TNF-α, IL-1β, IL-6, and MPO in the model group was increased (P<0.01), and the level of SOD was decreased (P<0.05). Pathological damage of lung tissue was obvious, and the protein expression of NF-κB p65, p-NF-κB p65, and TLR4 in lung tissue was increased (P<0.01). Compared with the model group, the white blood cell count in BALF and the levels of TNF-α, IL-1β, IL-6, and MPO in the treatment group was decreased (P<0.05,P<0.01), and the level of SOD was increased (P<0.05,P<0.01). Pathological damage of lung tissue was alleviated, and the protein expression of NF-κB p65, p-NF-κB p65, and TLR4 in lung tissue was decreased (P<0.01). ConclusionZingiberis Rhizoma Recens alcohol extract may play a protective role in LPS-induced acute lung injury in mice by inhibiting the TLR4/NF-κB signaling pathway.

8.
Braz. j. otorhinolaryngol. (Impr.) ; 89(3): 432-439, May-June 2023. tab, graf
Article Dans Anglais | LILACS-Express | LILACS | ID: biblio-1447709

Résumé

Abstract Objective The study aimed to investigate the feasibility of establishing rhinosinusitis model in rats combinated with Lipopolysaccharide (LPS) and merocel sponge. Methods SD (Sprague Dawley) rats that underwent nasal obstruction using Merocel sponge packing, rats with LPS instillation alone, and rats with both nasal obstruction and LPS instillation were used to establish rat models of rhinosinusitis. After the models were established, the nasal symptoms of rats were recorded, the histopathological examination and Transmission Electron Microscopy (TME) of the sinus tissue were performed and the levels of Tumor Necrosis Factor-α (TNF-α), Interleukin-6 (IL-6) in the blood were also analyzed. The expressions of Aquaporin-5 (AQP5), Occludin, Toll-Like Receptor-4 (TLR4), Medullary differentiation factor 88 (MyD88) and phosphorylated (p)-p65 protein were detected by Western blot to evaluate the effect and mechanism of the experimental models. Results We found that compared with the control group and LPS group, the sinusitis symptom scores in the Merocel sponge combined with LPS group were significantly increased; the respiratory epithelia of the maxillary sinus were degenerated, cilia were detached, and even inflammatory cell infiltration occurred; the levels of TNF-α and IL-6 were increased; the expression of AQP5 and Occludin protein was decreased; and the expressions of TLR4, MyD88, and p-p65 protein were increased. Conclusion For the first time, we successfully established a rat rhinosinusitis model using Merocel sponge with LPS and explored the possible mechanism of LPS action.

9.
Chinese Journal of Reparative and Reconstructive Surgery ; (12): 1011-1020, 2023.
Article Dans Chinois | WPRIM | ID: wpr-1009016

Résumé

OBJECTIVE@#To investigate the effects of melatonin (MT) on bone mass and serum inflammatory factors in rats received ovariectomy (OVX) and to investigate the effects of MT on the levels of inflammatory factors in culture medium and osteogenic ability of bone marrow mesenchymal stem cells (BMSCs) stimulated by lipopolysaccharide.@*METHODS@#Fifteen 12-week-old Sprague Dawley (SD) rats were randomly divided into 3 groups. The rats in Sham group only received bilateral lateral abdominal incision and suture, the rats in OVX group received bilateral OVX, and the rats in OVX+MT group received 100 mg/(kg·d) MT oral intervention after bilateral OVX. After 8 weeks, the levels of serum inflammatory factors [interleukin-1β (IL-1β), IL-6, and tumor necrosis factor α (TNF-α)] were detected using ELISA assay. Besides, the distal femurs were detected by Micro-CT to observe changes in bone mass and microstructure, and quantitatively measured bone volume fraction, trabecular thickness, and trabecular number. The BMSCs were extracted from the femurs of three 3-week-old SD rats using whole bone marrow culture method and passaged. The 3rd-5th passage BMSCs were cultured with different concentrations of MT (0, 1, 10, 100, 1 000 µmol/L), and the cell viability was then detected using cell counting kit 8 (CCK-8) to select the optimal concentration of MT for subsequent experiments. Cells were devided into osteogenic induction group (group A) and osteogenic induction+1/5/10 μg/mL lipopolysaccharide group (group B-D). The levels of inflammatory factors (IL-1β, IL-6 and TNF-α) in cell culture medium were detected using ELISA assay after corresponding intervention. According to the results of CCK-8 method and ELISA detection, the cells were intervened with the most significant concentration of lipopolysaccharide for stimulating inflammation and the optimal concentration of MT with osteogenic induction, defining as group E, and the cell culture medium was collected to detect the levels of inflammatory factors by ELISA assay. After that, alkaline phosphatase (ALP) staining and alizarin red staining were performed respectively in groups A, D, and E, and the expression levels of osteogenic related genes [collagen type Ⅰ alpha 1 chain (Col1a1) and RUNX family transcription factor 2 (Runx2)] were also detected by real time fluorescence quantitative PCR (RT-qPCR).@*RESULTS@#ELISA and Micro-CT assays showed that compared with Sham group, the bone mass of the rats in the OVX group significantly decreased, and the expression levels of serum inflammatory factors (IL-1β, IL-6, and TNF-α) in OVX group significantly increased (P<0.05). Significantly, the above indicators in OVX+MT group were all improved (P<0.05). Rat BMSCs were successfully extracted, and CCK-8 assay showed that 100 µmol/L was the maximum concentration of MT that did not cause a decrease in cell viability, and it was used in subsequent experiments. ELISA assays showed that compared with group A, the expression levels of inflammatory factors (IL-1β, IL-6, and TNF-α) in the cell culture medium of groups B-D were significantly increased after lipopolysaccharide stimulation (P<0.05), and in a concentration-dependent manner. Moreover, the expression levels of inflammatory factors in group D were significantly higher than those in groups B and C (P<0.05). After MT intervention, the expression levels of inflammatory factors in group E were significantly lower than those in group D (P<0.05). ALP staining, alizarin red staining, and RT-qPCR assays showed that compared with group A, the percentage of positive area of ALP and alizarin red and the relative mRNA expressions of Col1a1 and Runx2 in group D significantly decreased, while the above indicators in group E significantly improved after MT intervention (P<0.05).@*CONCLUSION@#MT may affect the bone mass of postmenopausal osteoporosis by reducing inflammation in rats; MT can reduce the inflammation of BMSCs stimulated by lipopolysaccharide and weaken its inhibition of osteogenic differentiation of BMSCs.


Sujets)
Femelle , Rats , Animaux , Facteur de nécrose tumorale alpha , Ostéogenèse , Rat Sprague-Dawley , Sous-unité alpha 1 du facteur CBF , Mélatonine/pharmacologie , Interleukine-6/génétique , Lipopolysaccharides/pharmacologie , Agents colorants , Inflammation
10.
China Journal of Chinese Materia Medica ; (24): 5863-5870, 2023.
Article Dans Chinois | WPRIM | ID: wpr-1008784

Résumé

This study aims to investigate the effects of baicalein(BAI) on lipopolysaccharide(LPS)-induced human microglial clone 3(HMC3) cells, with a focus on suppressing inflammatory responses and elucidating the potential mechanism underlying the therapeutic effects of BAI on ischemic stroke via modulating the cAMP-PKA-NF-κB/CREB pathway. The findings have significant implications for the application of traditional Chinese medicine in treating cerebral ischemic diseases. First, the safe dosage of BAI was screened, and then an inflammation model was established with HMC3 cells by induction with LPS for 24 h. The cells were assigned into a control group, a model group, and high-, medium-, and low-dose(5, 2.5, and 1.25 μmol·L~(-1), respectively) BAI groups. The levels of superoxide dismutase(SOD) and malondialdehyde(MDA) in cell extracts, as well as the levels of interleukin-1β(IL-1β), IL-6, tumor necrosis factor-α(TNF-α), and cyclic adenosine monophosphate(cAMP) in the cell supernatant, were measured. Western blot was performed to determine the expression of protein kinase A(PKA), phosphorylated cAMP-response element binding protein(p-CREB), and nuclear factor-kappa B p65(NF-κB p65). Hoechst 33342/PI staining was employed to assess cell apoptosis. High and low doses of BAI were used for treatment in the research on the mechanism. The results revealed that BAI at the concentrations of 10 μmol·L~(-1) and below had no impact on normally cultured HMC3 cells. LPS induction at 200 ng·mL~(-1) for 24 h reduced the SOD activity and increased the MDA content in HMC3 cells. However, 5, 2.5, and 1.25 μmol·L~(-1) BAI significantly increased the SOD activity and 5 μmol·L~(-1) BAI significantly decreased the MDA content. In addition, BAI ameliorated the M1 polarization of HMC3 cells induced by LPS, as indicated by cellular morphology. The results of ELISA demonstrated that BAI significantly lowered the levels of TNF-α, IL-1β, IL-6, and cAMP in the cell supernatant. Western blot revealed that BAI up-regulated the protein levels of PKA and p-CREB while down-regulating the expression of NF-κB p65. Hoechst 33342/PI staining results indicated that BAI mitigated the apoptosis of HMC3 cells. Overall, the results indicated that BAI had protective effects on the HMC3 cells induced by LPS, and could inhi-bit inflammatory response and improve cell apoptosis, which might be related to the regulation of the cAMP-PKA-NF-κB/CREB pathway.


Sujets)
Humains , Facteur de transcription NF-kappa B/métabolisme , Microglie , Facteur de nécrose tumorale alpha/métabolisme , Interleukine-6/métabolisme , Lipopolysaccharides/pharmacologie , Cyclic AMP-Dependent Protein Kinases/métabolisme , Superoxide dismutase/métabolisme
11.
Journal of Prevention and Treatment for Stomatological Diseases ; (12): 365-369, 2023.
Article Dans Chinois | WPRIM | ID: wpr-961362

Résumé

@#Porphyromonas gingivalis (P. gingivalis) is closely related to the occurrence and development of periodontitis. It is considered to be one of the important pathogens leading to alveolar bone resorption. At present, research on P. gingivalis mostly adopts standard laboratory strains whose genetic characteristics have been confirmed, are guaranteed and are traceable, such as ATCC 33277. The virulence phenotypes (endotoxin, firmbria, etc.) of clinically extracted isolates are quite different from those of standard strains, and the pathogenic effects and ability of the host are also widely different. In addition, P. gingivalis is considered to have a significant correlation with a variety of systemic diseases, and the virulence characteristics and pathogenic ability of different strains will have different effects on systemic diseases. However, at present, there is a lack of research on clinical strains and standard strains, and there is a lack of systematic comparison between the two sources of bacteria. In this paper, the differences in the virulence phenotypes and pathogenic effects between clinical isolates and standard strains of P. gingivalis in the last 5-10 years are reviewed. The aim is to elucidate the important virulence gene loci in the P. gingivalis gene sequence, which will play an important role in improving therapeutic methods and the development of related drugs.

12.
China Journal of Chinese Materia Medica ; (24): 2426-2434, 2023.
Article Dans Chinois | WPRIM | ID: wpr-981319

Résumé

Tripterygium glycosides liposome(TPGL) were prepared by thin film-dispersion method, which were optimized accor-ding to their morphological structures, average particle size and encapsulation rate. The measured particle size was(137.39±2.28) nm, and the encapsulation rate was 88.33%±1.82%. The mouse model of central nervous system inflammation was established by stereotaxic injection of lipopolysaccharide(LPS). TPGL and tripterygium glycosides(TPG) were administered intranasally for 21 days. The effects of intranasal administration of TPG and TPGL on behavioral cognitive impairment of mice due to LPS-induced central ner-vous system inflammation were estimated by animal behavioral tests, hematoxylin-eosin(HE) staining of hippocampus, real-time quantitative polymerase chain reaction(RT-qPCR) and immunofluorescence. Compared with TPG, TPGL caused less damage to the nasal mucosa, olfactory bulb, liver and kidney of mice administered intranasally. The behavioral performance of treated mice was significantly improved in water maze, Y maze and nesting experiment. Neuronal cell damage was reduced, and the expression levels of inflammation and apoptosis related genes [tumor necrosis factor-α(TNF-α), interleukin-1β(IL-1β), BCL2-associated X(Bax), etc.] and glial activation markers [ionized calcium binding adaptor molecule 1(IBA1) and glial fibrillary acidic protein(GFAP)] were decreased. These results indicated that liposome technique combined with nasal delivery alleviated the toxic side effects of TPG, and also significantly ameliorated the cognitive impairment of mice induced by central nervous system inflammation.


Sujets)
Souris , Animaux , Tripterygium , Liposomes , Hétérosides/usage thérapeutique , Administration par voie nasale , Lipopolysaccharides , Système nerveux central , Dysfonctionnement cognitif/traitement médicamenteux , Inflammation/métabolisme , Facteur de nécrose tumorale alpha/métabolisme , Glucosides cardiotoniques
13.
West China Journal of Stomatology ; (6): 269-275, 2023.
Article Dans Anglais | WPRIM | ID: wpr-981123

Résumé

OBJECTIVES@#This study aimed to clarify the effects of Foxp3 silencing on the expression of inflammatory cytokines in human periodontal ligament cells (hPDLFs) in an inflammatory environment and on cell proliferation and invasiveness, as well as to explore the role of Foxp3 gene in the development of periodontitis.@*METHODS@#An small interfering RNA (siRNA) construct specific for Foxp3 was transfected into hPDLFs. Foxp3 silencing efficiency was verified by reverse transcription-polymerase chain reaction (RT-PCR) and Western blotting, and the siRNA with the optimum silencing effect of Foxp3 gene was screened. Using lipopolysaccharide to simulate an inflammatory environment in vitro, CCK-8 detected the effect of silencing Foxp3 on hPDLFs proliferation under inflammatory conditions. Wound-healing experiments and transwell assays were conducted to detect the effect of silencing Foxp3 on hPDLF migration under inflammatory conditions. The expression of the inflammatory cytokines interleukin (IL)-6 and IL-8 was detected by RT-PCR and Western blotting under inflammatory conditions.@*RESULTS@#After siRNA transfection, RT-PCR and Western blotting analyses showed that the expression of Foxp3 mRNA in the Foxp3-si3 group decreased significantly (t=21.03, P<0.000 1), and the protein expression of Foxp3 also decreased significantly (t=12.8, P<0.001). In the inflammatory environment, Foxp3 gene silencing had no significant effect on hPDLFs proliferation (P>0.05), and Foxp3 gene silencing promoted hPDLFs migration (P<0.05). Moreover, the expression of IL-6 and IL-8 increased (P<0.05).@*CONCLUSIONS@#In an inflammatory environment, Foxp3 gene silencing promoted hPDLFs migration but had no significant effect on hPDLFs proliferation. The expression of inflammatory factors expressed in hPDLFs increased after Foxp3 gene silencing, indicating that Foxp3 gene inhibited inflammation in periodontitis.


Sujets)
Humains , Prolifération cellulaire/génétique , Cellules cultivées , Cytokines/métabolisme , Fibroblastes/métabolisme , Facteurs de transcription Forkhead/métabolisme , Extinction de l'expression des gènes , Interleukine-6/métabolisme , Interleukine-8/métabolisme , Desmodonte/métabolisme , Parodontite/métabolisme , Petit ARN interférent/métabolisme , Facteurs de transcription/métabolisme
14.
Journal of Prevention and Treatment for Stomatological Diseases ; (12): 701-711, 2023.
Article Dans Chinois | WPRIM | ID: wpr-980080

Résumé

Objective @#To study the effect of light-emitting diode (LED) red light on the osteogenic/odontogenic differentiation of human dental pulp stem cells (hDPSCs) and its mechanism were discussed. @*Methods@#This study has been reviewed and approved by the Ethics Committee. hDPSCs were cultured by tissue block enzyme digestion. The proliferative capacity of hDPSCs was detected by the CCK-8 at days 1, 3, 5 and 7 under stimulation with 0, 1, 5 and 10 μg/mL lipopolysaccharide (LPS), and the LPS stimulatory concentration was screened. The CG group (mineralization induction), LPS+CG group, and LPS+CG+ (2, 4, 6, 8, and 10 J/cm2) LED red light groups were set. On day 7, alkaline phosphatase (ALP) staining and ALP activity were determined. Relative expression levels of the ALP, osterix (OSX), dentin matrix protein-1 (DMP-1) and dentin sialophosphoprotein (DSPP) genes were measured by qRT-PCR. On day 21, alizarin red staining and calcium nodule quantitative determination were performed to screen the best light energy. The LPS+CG group and LPS+CG+LED group (optimal energy) were set up, and the secretion and expression levels of tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β) were detected by ELISAs on days 1, 3, 5 and 7. The relative expression levels of the extracellular regulated protein kinases 1/2 (ERK1/2), p38, c-Jun N-terminal kinase (JNK), and extracellular regulated protein kinases 5 (ERK5) proteins and their phosphorylated proteins in the MAPK signaling pathway were detected by Western blots. After the pathway was blocked, the relative expression levels of the ALP, OSX, DMP-1, and DSPP proteins after LED red light irradiation on day 7 were detected by Western blots.@*Results@# CCK-8 assays showed that the proliferation of hDPSCs induced by 10 μg/mL LPS was lower than that of the 0, 1, and 5 μg/mL groups on the 5th and 7th days (P<0.05), and 10 μg/mL was selected as the LPS stimulatory concentration in the follow-up experiment. ALP staining, ALP activity, gene expression levels of ALP, OSX, DMP-1 and DSPP and calcium nodule quantification in the LPS+CG+4 J/cm2 group were higher than those in the other treatment groups (P<0.05). 4 J/cm2 LED red light had the strongest ability to promote osteogenic/odontogenic differentiation and was used as the LED light energy density in subsequent experiments. ELISA showed that the secretion and expression levels of TNF-α and IL-1β in the LPS+CG+LED group were lower than those in the LPS+CG group on the 5th and 7th days (P<0.05). Western blot analysis showed that 4 J/cm2 LED red light promoted the expression levels of the p-ERK1/2, p-p38, p-JNK and p-ERK5 proteins. After the MAPK pathway was blocked, the expression levels of the ALP, OSX, DMP-1, and DSPP proteins in the LPS+CG+LED+U0126 (ERK1/2 inhibitor), SP600125 (JNK inhibitor), and BIX02189 (ERK5 inhibitor) groups were lower than those in the LPS+CG+LED group (P<0.001). The protein expression levels of ALP, OSX and DMP-1 in the LPS+CG+LED+SB203580 (p38 inhibitor) group were not significantly different from those in the LPS+CG+LED group (P>0.05).@*Conclusion@#In inflammatory conditions, LED red light promotes osteogenic/odontogenic differentiation of hDPSCs. This effect may be attributed to enhancement of the ERK1/2, JNK, and ERK5 signaling pathways, which reduces the production of the inflammatory cytokines TNF-α and IL-1β.

15.
China Journal of Chinese Materia Medica ; (24): 1066-1075, 2023.
Article Dans Chinois | WPRIM | ID: wpr-970578

Résumé

This paper aimed to explore the antidepressant effect of the essential oil from Schizonepeta tenuifolia Briq.(EOST) on the treatment of depression and its mechanism by using a combination of network pharmacology and the mouse model of lipopolysaccharide(LPS)-induced depression. The chemical components in EOST were identified using gas chromatography-mass spectrometer(GC-MS), and 12 active components were selected as the study objects. The targets related to EOST were obtained by Traditional Chinese Medicines Systems Pharmacology(TCMSP) and SwissTargetPrediction database. The targets related to depression were screened out through GeneCards, Therapeutic Target Database(TTD), and Online Mendelian Inheritance in Man(OMIM) database. The Venny 2.1 was applied to screen out the common targets of EOST and depression. The targets were imported into Cytoscape 3.7.2 to generate "drug-active component-diease-target" network diagram. The protein-protein interaction(PPI) network was constructed using STRING 11.5 database and Cytoscape 3.7.2, and the core targets were screened out. DAVID 6.8 database was used for Gene Ontology(GO) func-tional enrichment analysis and Kyoto Encyclopedia of Genes and Genomes(KEGG) pathway enrichment analysis, and subsequently the enrichment results were visualized through the bioinformatics platform. The mouse model of depression was induced by intraperitoneally injecting with LPS in mice. Before modeling, mice were administrated orally with EOST. The antidepressant effect of EOST was evalua-ted by tail suspension test(TST), forced swimming test(FST), and novelty suppressed feeding test(NSFT) after modeling. The content of interleukin(IL)-1β was determined by enzyme-linked immunosorbent assay(ELISA), and the protein expression levels of IL-1β and pro IL-1β in the hippocampus were determined by Western blot. There were 12 main components and 179 targets in EOAT, of which, 116 targets were related to depression, mainly involved in neuroactive ligand-receptor interaction, calcium signaling pathway, and cyclic adenosine monophosphate(cAMP) signaling pathway. Biological processes such as synaptic signal transduction, G-protein coupled receptor signaling pathway, and chemical synaptic transmission were involved. Molecular functions such as neurotransmitter receptor activity, RNA polymerase Ⅱ transcription factor activity, and heme binding were involved. In mice experiments, the results showed that EOST at 100 mg·kg~(-1) and 50 mg·kg~(-1) significantly shortened the immobility time in TST and FST as well as the feeding latency in NSFT compared with the model group, decreased the levels of serum IL-1β and NO, and reduced the protein expression levels of IL-1β and pro IL-1β in the hippocampus. In conclusion, EOST shows a good antidepressant effect in a multi-component, multi-target, and multi-pathway manner. The mechanism may be attributed to the fact that EOST can down-regulate the protein expression levels of IL-1β and pro IL-1β, decrease the release of inflammatory factors, and reduce neuroinflammation response.


Sujets)
Animaux , Souris , Huile essentielle , Dépression , Lipopolysaccharides , Pharmacologie des réseaux , Bases de données génétiques , Signalisation calcique , Modèles animaux de maladie humaine
16.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 93-101, 2023.
Article Dans Chinois | WPRIM | ID: wpr-969603

Résumé

ObjectiveTo investigate the effect of baicalein (BAI) on SH-SY5Y cell injury in lipopolysaccharide (LPS)-activated BV-2 cells conditioned medium and its mechanism. MethodThe BV-2 cells were activated with 1 mg∙L-1 of LPS to establish the conditioned medium of the LPS group, and a blank group and groups of BAI with low, medium, and high concentrations (4, 8, 16 μmol∙L-1) were established. SH-SY5Y cells were cultured with the conditioned medium of each group. The cell viability of BV-2 cells in each group after the intervention was determined by cell counting kit-8 (CCK-8). The content of tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), and interleukin-1β (IL-1β) in the supernatant of BV-2 cells in each group was determined by enzyme-linked immunosorbent assay (ELISA). The protein expression of α-synuclein (α-syn) and tyrosine hydroxylase (TH) in SH-SY5Y cells was observed by immunohistochemical (IHC) staining, and the nuclear transfer of nuclear factor kappa-B p65 protein (NF-κB p65, p65) in SH-SY5Y cells was observed by immunofluorescence (IF). The protein expression of Toll-like receptor 4(TLR4), p65, phosphorylated p65 (p-p65), and Myeloid differentiation factor 88 (MyD88) in SH-SY5Y cells was observed by Western blot. ResultAs compared with the blank group, the viability of BV-2 cells in the LPS group was significantly decreased (P<0.01), and the content of TNF-α, IL-6, and IL-1β in the cell supernatant was significantly increased (P<0.01). As compared with the LPS group, the cell viability was significantly increased in groups of BAI with low, medium, and high concentrations (P<0.01), and TNF-α in the cell supernatant was significantly decreased (P<0.01). The content of IL-6 in the cell supernatant was decreased in the BAI group with high concentration (P<0.05), and the content of IL-1β in the cell supernatant was significantly decreased in the BAI groups with medium and high concentrations (P<0.01). The results of conditioned medium cultured SH-SY5Y cells showed that as compared with the blank group, the protein expression of p65 in the LPS group entered into the nucleus and accumulated, and the protein expression of TH was significantly decreased (P<0.01), while that of α-syn, TLR4, MyD88, and p-p65 was increased (P<0.05, P<0.01). Compared with the LPS group, the protein expression of p65 in SH-SY5Y cells in BAI groups with low, medium, and high concentrations gradually dispersed into the cytoplasm and had the enhanced protein expression of TH (P<0.01) but the lowered protein expression of α-syn (P<0.01). The protein expression of TLR4, MyD88, and p-p65 was decreased in the BAI group with high concentration (P<0.05, P<0.01), the protein expression of p-p65 and MyD88 was decreased in the BAI group with medium concentration, and the protein expression of MyD88 was decreased in the BAI group with low concentration (P<0.05). There was no significant difference in the protein expression of p65 among groups. ConclusionBAI can inhibit the activation of BV-2 cells, thereby inhibiting the inflammatory response caused by LPS and further inhibiting the damage of inflammation to SH-SY5Y cells. The mechanism may be related to the regulation of the TLR4/MyD88/NF-κB signaling pathway and reduction of the inflammatory response, thus playing a neuroprotective role.

17.
Journal of Southern Medical University ; (12): 994-1001, 2023.
Article Dans Chinois | WPRIM | ID: wpr-987013

Résumé

OBJECTIVE@#To observe the effect of exosomes secreted by lipopolysaccharides (LPS)-stimulated macrophages on hepatic stellate cell activation and migration and explore the underlying molecular mechanism.@*METHODS@#Human monocyte THP-1 cells were induced to differentiate into macrophages using propylene glycol methyl ether acetic acid (PMA, 100 ng/mL, 24 h) followed by stimulation with LPS, and the culture supernatant of macrophages was collected for extraction of the exosomes by ultracentrifugation. The expression of miR-155-5p in the exosomes was detected using qRT-PCR. A Transwell co-culture system was used to observe the effects of the macrophage-derived exosomes on LX2 cell (a hepatic stellate cell line) proliferation, migration, oxidative stress and the expression of fibrosis biomarkers, which were also observed in LX2 cells transfected with miR-155-5p-mimics or miR-155-5p-inhibitors. Western blotting was used to detect the expressions of SOCS1 and its downstream signal pathway proteins.@*RESULTS@#Treatment with the exosomes from LPS-stimulated macrophages significantly enhanced the proliferation and migration ability of LX2 cells and increased the levels of oxidative stress and expressions of the fibrosis markers such as type Ⅰ collagen (P < 0.05). The expression of miR-155-5p in the exosomes secreted by macrophages was significantly increased after LPS treatment (P < 0.01). LX2 cells overexpressing miR-155-5p also exhibited significantly enhanced proliferation and migration with increased oxidative stress levels and expression of type Ⅰ collagen (P < 0.05), and interference of miR-155-5p expression produced the opposite effects. Western blotting showed that miR-155-5p overexpression obviously inhibited SOCS1 expression and promoted p-Smad2/3, Smad2/3 and RhoA protein expressions in LX2 cells (P < 0.05).@*CONCLUSION@#LPS stimulation of the macrophages increases miR-155-5p expression in the exosomes to promote activation and migration and increase oxidative stress and collagen production in hepatic stellate cells.


Sujets)
Humains , Cellules étoilées du foie , Lipopolysaccharides/pharmacologie , Collagène de type I , Exosomes , Macrophages , microARN
18.
Chinese Journal of Natural Medicines (English Ed.) ; (6): 423-435, 2023.
Article Dans Anglais | WPRIM | ID: wpr-982713

Résumé

Acute lung injury (ALI) is a prevalent and severe clinical condition characterized by inflammatory damage to the lung endothelial and epithelial barriers, resulting in high incidence and mortality rates. Currently, there is a lack of safe and effective drugs for the treatment of ALI. In a previous clinical study, we observed that Jinyinqingre oral liquid (JYQR), a Traditional Chinese Medicine formulation prepared by the Taihe Hospital, Affiliated Hospital of Hubei University of Medicine, exhibited notable efficacy in treating inflammation-related hepatitis and cholecystitis in clinical settings. However, the potential role of JYQR in ALI/acute respiratory distress syndrome (ARDS) and its anti-inflammatory mechanism remains unexplored. Thus, the present study aimed to investigate the therapeutic effects and underlying molecular mechanisms of JYQR in ALI using a mouse model of lipopolysaccharide (LPS)-induced ALI and an in vitro RAW264.7 cell model. JYQR yielded substantial improvements in LPS-induced histological alterations in lung tissues. Additionally, JYQR administration led to a noteworthy reduction in total protein levels within the BALF, a decrease in MPAP, and attenuation of pleural thickness. These findings collectively highlight the remarkable efficacy of JYQR in mitigating the deleterious effects of LPS-induced ALI. Mechanistic investigations revealed that JYQR pretreatment significantly inhibited NF-κB activation and downregulated the expressions of the downstream proteins, namely NLRP3 and GSDMD, as well as proinflammatory cytokine levels in mice and RAW2647 cells. Consequently, JYQR alleviated LPS-induced ALI by inhibiting the NF-κB/NLRP3/GSDMD pathway. JYQR exerts a protective effect against LPS-induced ALI in mice, and its mechanism of action involves the downregulation of the NF-κB/NLRP3/GSDMD inflammatory pathway.


Sujets)
Humains , Facteur de transcription NF-kappa B/métabolisme , Lipopolysaccharides/métabolisme , Protéine-3 de la famille des NLR contenant un domaine pyrine/métabolisme , Lésion pulmonaire aigüe/métabolisme , Poumon , Protéines de liaison aux phosphates/usage thérapeutique , Perforines/usage thérapeutique
19.
Neuroscience Bulletin ; (6): 911-928, 2023.
Article Dans Anglais | WPRIM | ID: wpr-982435

Résumé

Increased intestinal barrier permeability, leaky gut, has been reported in patients with autism. However, its contribution to the development of autism has not been determined. We selected dextran sulfate sodium (DSS) to disrupt and metformin to repair the intestinal barrier in BTBR T+tf/J autistic mice to test this hypothesis. DSS treatment resulted in a decreased affinity for social proximity; however, autistic behaviors in mice were improved after the administration of metformin. We found an increased affinity for social proximity/social memory and decreased repetitive and anxiety-related behaviors. The concentration of lipopolysaccharides in blood decreased after the administration of metformin. The expression levels of the key molecules in the toll-like receptor 4 (TLR4)-myeloid differentiation factor 88 (MyD88)-nuclear factor kappa B (NF-κB) pathway and their downstream inflammatory cytokines in the cerebral cortex were both repressed. Thus, "leaky gut" could be a trigger for the development of autism via activation of the lipopolysaccharide-mediated TLR4-MyD88-NF-κB pathway.


Sujets)
Souris , Animaux , Facteur de transcription NF-kappa B , Facteur de différenciation myéloïde-88/métabolisme , Lipopolysaccharides/pharmacologie , Récepteur de type Toll-4/métabolisme , Trouble autistique/métabolisme , Transduction du signal/physiologie
20.
Journal of Zhejiang University. Science. B ; (12): 430-441, 2023.
Article Dans Anglais | WPRIM | ID: wpr-982383

Résumé

Early weaned piglets suffer from oxidative stress and enteral infection, which usually results in gut microbial dysbiosis, serve diarrhea, and even death. Rice bran oil (RBO), a polyphenol-enriched by-product of rice processing, has been shown to have antioxidant and anti-inflammatory properties both in vivo and in vitro. Here, we ascertained the proper RBO supplementation level, and subsequently determined its effects on lipopolysaccharide (LPS)-induced intestinal dysfunction in weaned piglets. A total of 168 piglets were randomly allocated into four groups of seven replicates (42 piglets each group, (21±1) d of age, body weight (7.60±0.04) kg, and half males and half females) and were given basal diet (Ctrl) or basal diet supplemented with 0.01% (mass fraction) RBO (RBO1), 0.02% RBO (RBO2), or 0.03% RBO (RBO3) for 21 d. Then, seven piglets from the Ctrl and the RBO were treated with LPS (100 μg/kg body weight (BW)) as LPS group and RBO+LPS group, respectively. Meanwhile, seven piglets from the Ctrl were treated with the saline vehicle (Ctrl group). Four hours later, all treated piglets were sacrificed for taking samples of plasma, jejunum tissues, and feces. The results showed that 0.02% was the optimal dose of dietary RBO supplementation based on diarrhea, average daily gain, and average daily feed intake indices in early weaning piglets. Furthermore, RBO protected piglets against LPS-induced jejunal epithelium damage, which was indicated by the increases in villus height, villus height/crypt depth ratio, and Claudin-1 levels, as well as a decreased level of jejunal epithelium apoptosis. RBO also improved the antioxidant ability of LPS-challenged piglets, which was indicated by the elevated concentrations of catalase and superoxide dismutase, and increased total antioxidant capacity, as well as the decreased concentrations of diamine oxidase and malondialdehyde in plasma. Meanwhile, RBO improved the immune function of LPS-challenged weaned piglets, which was indicated by elevated immunoglobulin A (IgA), IgM, β‍‍-defensin-1, and lysozyme levels in the plasma. In addition, RBO supplementation improved the LPS challenge-induced dysbiosis of gut microbiota. Particularly, the indices of antioxidant capacity, intestinal damage, and immunity were significantly associated with the RBO-regulated gut microbiota. These findings suggested that 0.02% RBO is a suitable dose to protect against LPS-induced intestinal damage, oxidative stress, and jejunal microbiota dysbiosis in early weaned piglets.


Sujets)
Mâle , Femelle , Animaux , Suidae , Lipopolysaccharides/toxicité , Antioxydants/pharmacologie , Huile de riz , Dysbiose , Compléments alimentaires , Diarrhée/médecine vétérinaire , Sevrage , Poids
SÉLECTION CITATIONS
Détails de la recherche