Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 2 de 2
Filtre
Ajouter des filtres








Gamme d'année
1.
Biomolecules & Therapeutics ; : 529-535, 2016.
Article Dans Anglais | WPRIM | ID: wpr-201376

Résumé

Atopic dermatitis (AD) results from gene and environment interactions that lead to a range of immunological abnormalities and breakdown of the skin barrier. Protease-activated receptor 2 (PAR2) belongs to a family of G-protein coupled receptors and is expressed in suprabasal layers of the epidermis. PAR2 is activated by both trypsin and a specific agonist peptide, SLIGKV-NH₂ and is involved in both epidermal permeability barrier homeostasis and epithelial inflammation. In this study, we investigated the effect of lobaric acid on inflammation, keratinocyte differentiation, and recovery of the skin barrier in hairless mice. Lobaric acid blocked trypsin-induced and SLIGKV-NH₂-induced PAR2 activation resulting in decreased mobilization of intracellular Ca²⁺ in HaCaT keratinocytes. Lobaric acid reduced expression of interleukin-8 induced by SLIGKV-NH₂ and thymus and activation regulated chemokine (TARC) induced by tumor necrosis factor-a (TNF-α) and IFN-γ in HaCaT keratinocytes. Lobaric acid also blocked SLIGKV-NH₂-induced activation of ERK, which is a downstream signal of PAR2 in normal human keratinocytes (NHEKs). Treatment with SLIGKV-NH₂ downregulated expression of involucrin, a differentiation marker protein in HaCaT keratinocytes, and upregulated expression of involucrin, transglutamase1 and filaggrin in NHEKs. However, lobaric acid antagonized the effect of SLIGKV-NH₂ in HaCaT keratinocytes and NHEKs. Topical application of lobaric acid accelerated barrier recovery kinetics in a SKH-1 hairless mouse model. These results suggested that lobaric acid is a PAR2 antagonist and could be a possible therapeutic agent for atopic dermatitis.


Sujets)
Animaux , Humains , Souris , Chimiokine CCL17 , Eczéma atopique , Épiderme , Protéines G , Homéostasie , Inflammation , Interleukine-8 , Kératinocytes , Cinétique , Souris hairless , Nécrose , Perméabilité , Récepteur de type PAR-2 , Peau , Trypsine
2.
Biomolecules & Therapeutics ; : 25-32, 2016.
Article Dans Anglais | WPRIM | ID: wpr-20742

Résumé

Lichens have been known to possess multiple biological activities, including anti-proliferative and anti-inflammatory activities. Vascular cell adhesion molecule-1 (VCAM-1) may play a role in the development of atherosclerosis. Hence, VCAM-1 is a possible therapeutic target in the treatment of the inflammatory disease. However, the effect of lobaric acid on VCAM-1 has not yet been investigated and characterized. For this study, we examined the effect of lobaric acid on the inhibition of VCAM-1 in tumor necrosis factor-alpha (TNF-alpha)-stimulated mouse vascular smooth muscle cells. Western blot and ELISA showed that the increased expression of VCAM-1 by TNF-alpha was significantly suppressed by the pre-treatment of lobaric acid (0.1-10 mug/ml) for 2 h. Lobaric acid abrogated TNF-alpha-induced NF-kappaB activity through preventing the degradation of IkappaB and phosphorylation of extracellular signal-regulated kinases (ERK), c-Jun N-terminal kinases (JNK), and p38 mitogen activated protein (MAP) kinase. Lobaric acid also inhibited the expression of TNF-alpha receptor 1 (TNF-R1). Overall, our results suggest that lobaric acid inhibited VCAM-1 expression through the inhibition of p38, ERK, JNK and NF-kappaB signaling pathways, and downregulation of TNF-R1 expression. Therefore, it is implicated that lobaric acid may suppress inflammation by altering the physiology of the atherosclerotic lesion.


Sujets)
Animaux , Souris , Athérosclérose , Technique de Western , Régulation négative , Test ELISA , Extracellular Signal-Regulated MAP Kinases , Inflammation , Lichens , Muscles lisses vasculaires , Facteur de transcription NF-kappa B , Phosphorylation , Phosphotransferases , Physiologie , Facteur de nécrose tumorale alpha , Molécule-1 d'adhérence des cellules vasculaires
SÉLECTION CITATIONS
Détails de la recherche