Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 4.414
Filtre
1.
Arch. argent. pediatr ; 122(3): e202310084, jun. 2024. ilus
Article Dans Anglais, Espagnol | LILACS, BINACIS | ID: biblio-1554954

Résumé

Las enfermedades pulmonares intersticiales son patologías poco frecuentes en pediatría. Dentro de ellas, se incluyen las disfunciones del metabolismo del surfactante pulmonar, molécula anfipática cuya función es disminuir la tensión superficial y evitar el colapso alveolar. Se presenta el caso de un lactante de 6 meses, en seguimiento por bajo peso, que presentó dificultad respiratoria aguda y cianosis; la radiografía de tórax evidenció infiltrado intersticial, neumomediastino y neumotórax bilateral. Al interrogatorio, surgió antecedente materno de internación al año de vida, con requerimiento de oxigenoterapia prolongada y diagnóstico desconocido; presenta signos de hipoxia crónica. El paciente cursó internación con requerimiento de oxigenoterapia. Se realizaron estudios complementarios en búsqueda de etiología, sin resultados positivos. La tomografía de tórax evidenció opacidades en vidrio esmerilado, engrosamiento del intersticio septal y áreas de atrapamiento aéreo; con resultado de biopsia pulmonar y estudio genético se llegó al diagnóstico de disfunción del metabolismo del surfactante pulmonar.


Interstitial lung diseases are rare in pediatrics. They include dysfunctions in the metabolism of pulmonary surfactant, an amphipathic molecule that reduces surface tension and prevents alveolar collapse. Here we describe the case of a 6-month-old infant controlled for low weight, who presented with acute respiratory distress and cyanosis; his chest X-ray showed interstitial infiltrate, pneumomediastinum, and bilateral pneumothorax. During history-taking, it was noted that his mother had a history of hospitalization at 1 year old with unknown diagnosis, requiring prolonged oxygen therapy; she now shows signs of chronic hypoxia. The patient was hospitalized and required oxygen therapy. Ancillary tests were done to look for the etiology of the condition, with no positive results. A chest computed tomography showed groundglass opacities, thickening of the septal interstitium, and areas of air trapping; based on the results of a lung biopsy and a genetic study, pulmonary surfactant metabolism dysfunction was diagnosed.


Sujets)
Humains , Nourrisson , Surfactants pulmonaires , Pneumopathies interstitielles/diagnostic , Pneumopathies interstitielles/étiologie , Oxygène , Radiographie
3.
Arch. argent. pediatr ; 122(2): e202310149, abr. 2024. ilus
Article Dans Anglais, Espagnol | LILACS, BINACIS | ID: biblio-1537741

Résumé

La sepsis es un problema global de salud y la progresión hacia el shock séptico se asocia con un incremento marcado de la morbimortalidad. En este escenario, el aumento del lactato plasmático demostró ser un indicador de gravedad y un predictor de mortalidad, y suele interpretarse casi exclusivamente como marcador de baja perfusión tisular. Sin embargo, últimamente se produjo un cambio de paradigma en la exégesis del metabolismo y propiedades biológicas del lactato. En efecto, la adaptación metabólica al estrés, aun con adecuado aporte de oxígeno, puede justificar la elevación del lactato circulante. Asimismo, otras consecuencias fisiopatológicas de la sepsis, como la disfunción mitocondrial, se asocian con el desarrollo de hiperlactatemia sin que necesariamente se acompañen de baja perfusión tisular. Interpretar el origen y la función del lactato puede resultar de suma utilidad clínica en la sepsis, especialmente cuando sus niveles circulantes fundamentan las medidas de reanimación.


Sepsis is a global health problem; progression to septic shock is associated with a marked increase in morbidity and mortality. In this setting, increased plasma lactate levels demonstrated to be an indicator of severity and a predictor of mortality, and are usually interpreted almost exclusively as a marker of low tissue perfusion. However, a recent paradigm shift has occurred in the exegesis of lactate metabolism and its biological properties. Indeed, metabolic adaptation to stress, even with an adequate oxygen supply, may account for high circulating lactate levels. Likewise, other pathophysiological consequences of sepsis, such as mitochondrial dysfunction, are associated with the development of hyperlactatemia, which is not necessarily accompanied by low tissue perfusion. Interpreting the origin and function of lactate may be of great clinical utility in sepsis, especially when circulating lactate levels are the basis for resuscitative measures.


Sujets)
Humains , Choc septique , Sepsie/diagnostic , Hyperlactatémie/complications , Hyperlactatémie/étiologie , Acide lactique/métabolisme
4.
Braz. j. med. biol. res ; 57: e13360, fev.2024. tab, graf
Article Dans Anglais | LILACS-Express | LILACS | ID: biblio-1557306

Résumé

Abstract This review provides the current state of knowledge regarding the use of nutritional nanocompounds on exercise performance. The reviewed studies used the following nanocompounds: resveratrol-loaded lipid nanoparticles, folic acid into layered hydroxide nanoparticle, redox-active nanoparticles with nitroxide radicals, and iron into liposomes. Most of these nutritional nanocompounds seem to improve performance in endurance exercise compared to the active compound in the non-nanoencapsulated form and/or placebo. Nutritional nanocompounds also induced the following physiological and metabolic alterations: 1) improved antioxidant activity and reduced oxidative stress; 2) reduction in inflammation status; 3) maintenance of muscle integrity; 4) improvement in mitochondrial function and quality; 5) enhanced glucose levels during exercise; 6) higher muscle and hepatic glycogen levels; and 7) increased serum and liver iron content. However, all the reviewed studies were conducted in animals (mice and rats). In conclusion, nutritional nanocompounds are a promising approach to improving exercise performance. As the studies using nutritional nanocompounds were all conducted in animals, further studies in humans are necessary to better understand the application of nutritional nanocompounds in sport and exercise science.

5.
Braz. j. med. biol. res ; 57: e13172, fev.2024. tab, graf
Article Dans Anglais | LILACS-Express | LILACS | ID: biblio-1557326

Résumé

Accumulation of visceral adipose tissue is associated with metabolic syndrome (MS), insulin resistance, and dyslipidemia. Here we examined several morphometric and biochemical parameters linked to MS in a rodent litter size reduction model, and how a 30-day fish oil (FO) supplementation affected these parameters. On day 3 post-birth, pups were divided into groups of ten or three. On day 22, rats were split into control (C) and small litter (SL) until 60 days old. Then, after metabolic disturbance and obesity were confirmed, FO supplementation started for 30 days and the new groups were named control (C), FO supplemented (FO), obese (Ob), and obese FO supplemented (ObFO). Comparison was performed by Student t-test or 2-way ANOVA followed by Tukey post hoc test. At the end of the 60-day period, SL rats were hyperphagic, obese, hypoinsulinemic, normoglycemic, and had high visceral fat depot and high interleukin (IL)-6 plasma concentration. Obese rats at 90 days of age were fatter, hyperphagic, hyperglycemic, hypertriacylgliceromic, hipoinsulinemic, with low innate immune response. IL-6 production ex vivo was higher, but in plasma it was not different from the control group. FO supplementation brought all biochemical changes to normal values, normalized food intake, and reduced body weight and fat mass in obese rats. The innate immune response was improved but still not as efficient as in lean animals. Our results suggested that as soon MS appears, FO supplementation must be used to ameliorate the morpho- and biochemical effects caused by MS and improve the innate immune response.

6.
Rev. chil. nutr ; 51(1)feb. 2024.
Article Dans Anglais | LILACS-Express | LILACS | ID: biblio-1550807

Résumé

Diet therapy in conservative treatment of chronic kidney disease involves protein restriction, but there is not enough evidence to recommend a particular type of protein, whether animal or plant based. However, studies suggest that plant-based diets help reduce the consumption of total and animal protein, reduce the need for nephroprotective drugs, improve complications and bring advantages in terms of disease progression and patient survival. The article considers up-to-date data on the effects of this diet and observed that when low in protein, primarily vegetable and in some cases supplemented with ketoanalogues, it can result in positive clinical outcomes, such as: delay in the decrease in the glomerular filtration rate, lower concentrations of urea, reduction of serum creatinine and phosphorus concentrations, lower metabolic acidosis, higher insulin sensitivity and lower systemic inflammation. As a whole, this dietary pattern may be able to postpone the start of dialysis with less progression of renal insufficiency. Additional research is needed to better characterize this dietary pattern.


La dietoterapia en el tratamiento conservador de la enfermedad renal crónica implica la restricción de proteínas, pero aún no hay pruebas suficientes para recomendar un tipo concreto de proteínas, ya sean animales o vegetales. Sin embargo, los estudios sugieren que las dietas basadas en plantas ayudan a reducir la ingesta de proteínas totales y animales, disminuyen la necesidad de fármacos nefroprotectores, mejoran las complicaciones y presentan ventajas con respecto a la progresión de la enfermedad y la supervivencia de los pacientes. En este artículo se consideran datos actualizados sobre los efectos de esta dieta y se observa que, cuando es hipoproteica, principalmente vegetal y en algunos casos se complementa con cetoanálogos, puede dar lugar a resultados clínicos positivos, como una disminución retardada de la tasa de filtración glomerular, concentraciones más bajas de urea, concentraciones reducidas de creatinina y fósforo séricos, menor acidosis metabólica, mayor sensibilidad a la insulina y menor inflamación sistémica. En conjunto, este patrón dietético tiene el potencial de retrasar el inicio de la diálisis con una menor progresión de la insuficiencia renal. Es necesario seguir investigando para caracterizar mejor este patrón dietético.

7.
Journal of Zhejiang University. Medical sciences ; (6): 1-14, 2024.
Article Dans Anglais | WPRIM | ID: wpr-1009949

Résumé

Tumor cells adaptively reforge their metabolism to meet the demands of energy and biosynthesis. Mitochondria, pivotal organelles in the metabolic reprogramming of tumor cells, contribute to tumorigenesis and cancer progression significantly through various dysfunctions in both tumor and immune cells. Alterations in mitochondrial dynamics and metabolic signaling pathways exert crucial regulatory influence on the activation, proliferation, and differentiation of immune cells. The tumor microenvironment orchestrates the activation and functionality of tumor-infiltrating immune cells by reprogramming mitochondrial metabolism and inducing shifts in mitochondrial dynamics, thereby facilitating the establishment of a tumor immunosuppressive microenvironment. Stress-induced leakage of mitochondrial DNA contributes multifaceted regulatory effects on anti-tumor immune responses and the immunosuppressive microenvironment by activating multiple natural immune signals, including cGAS-STING, TLR9, and NLRP3. Moreover, mitochondrial DNA-mediated immunogenic cell death emerges as a promising avenue for anti-tumor immunotherapy. Additionally, mtROS, a crucial factor in tumorigenesis, drives the formation of tumor immunosuppressive microenvironment by changing the composition of immune cells within the tumor microenvironment. This review focuses on the intrinsic relationship between mitochondrial biology and anti-tumor immune responses from multiple angles. We expect to explore the core role of mitochondria in the dynamic interplay between the tumor and the host, in order to facilitate the development of targeted mitochondrial strategies for anti-tumor immunotherapy.

8.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 176-185, 2024.
Article Dans Chinois | WPRIM | ID: wpr-999174

Résumé

Coronary microvascular dysfunction (CMD) is one of the important causes of myocardial ischemia and non-obstructive coronary artery ischemic symptoms. However, effective diagnostic methods and targeted treatment strategies for CMD are currently lacking. According to traditional Chinese medicine (TCM), the comorbidity theory of "blood-vessel-cardiac collaterals" plays a central role throughout the entire development process of CMD. It suggests that in the clinical diagnosis and treatment of CMD, the treatment of blood, vessels, and cardiac collaterals should not be neglected. In light of this, insect medicines, known for their efficacy in promoting blood circulation, resolving stasis, and alleviating spasms, hold promise as a potential treatment for CMD. However, there is currently no research or summary on the use of insect medicines for the treatment of CMD. Therefore, this article took the comorbidity theory of "blood-vessel-cardiac collaterals" as the starting point and divided the pathogenesis of CMD into five evolution stages: Beginning in the blood (changes in blood components and hemorheology), progressing in the vessels (atheromatous plaque formation and unstable plaques), occurring in the cardiac collaterals (microvascular endothelial damage and microvascular constriction and spasms), ending in the cardiac collaterals (microvascular remodeling), and resulting in energy metabolism disorders throughout the process, so as to explore the pathogenesis and evolution of CMD. In addition, based on the modern pharmacological research on insect medicines, this article discussed the clinical application of insect medicines in the treatment of CMD from four aspects: Promoting blood circulation and removing blood stasis to relieve vessels' obstruction, relieving spasms to alleviate pain, combating poison with poison to disperse stagnation, and tonifying cardiac collaterals to nourish the heart, which aims to provide a theoretical basis for the use of TCM in treating CMD, broaden the scope of medication, and improve clinical efficacy.

9.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 77-86, 2024.
Article Dans Chinois | WPRIM | ID: wpr-999163

Résumé

ObjectiveTo investigate the effect of Gegen Qinliantang on glucose and lipid metabolism in the rat model of catch-up growth (CUG) induced by a high-fat diet and the underlying mechanism. MethodA total of 60 SD rats were randomized into a normal control group (n=18) and a modeling group (n=42). The rat model of CUG was established with a restricted diet followed by a high-fat diet, and the changes of general status and body weight were observed. The levels of fasting blood glucose (FBG), fasting insulin (FINS), triglyceride (TG), and total cholesterol (TC) were measured in 6 rats in each group at the end of the 4th and 8th week, respectively. The homeostasis model assessment of insulin resistance index (HOMA-IR) was calculated, and the insulin sensitivity and body composition changes of CUG rats were evaluated. The successfully modeled rats were assigned into 6 groups: normal control, model, high-, medium-, and low-dose Gegen Qinliantang (2.5, 5, 10 g·kg-1), and pioglitazone (3.125 mg·kg-1). The rats were administrated with corresponding drugs by gavage for 6 weeks, and the normal control group and model group were administrated with the same amount of normal saline. During the experiment period, the changes of body weight were recorded, and the FBG, FINS, HOMA-IR, TG, and TC were determined at the end of the experiment. Hematoxylin-eosin (HE) staining was employed to observe the pathological changes of skeletal muscle in rats. The levels of reactive oxygen species (ROS) and malondialdehyde (MDA) in the skeletal muscle were measured strictly according to the manuals of the reagent kits. Real-time fluorescence quantitative polymerase chain reaction (Real-time PCR) was performed to measure the mRNA levels of silencing information regulator 1 (SIRT1), peroxisome proliferator-activated receptor-gamma coactivator1α (PGC1α), and nuclear respiratory factor 1 (Nrf1) in the skeletal muscle. Western blot and immunohistochemistry were employed to assess the expression of SIRT1, PGC1α, and Nrf1 in the skeletal muscle. ResultCompared with the normal control group, the model group presented elevated levels of FBG, FINS, TG, and TC (P<0.05, P<0.01), increased HOMA-IR (P<0.01), increased diameter of muscle fibers and adipocytes between muscle cells in the skeletal muscle, rising levels of ROS and MDA in the skeletal muscle (P<0.01), and down-regulated mRNA and protein levels of SIRT1, PGC1α, and Nrf1 (P<0.05, P<0.01). Compared with the model group, Gegen Qinliantang (especially the medium and high doses) and pioglitazone decreased the body weight, FINS, HOMA-IR, and TG (P<0.05, P<0.01) and reduced interstitial components such as intermuscular fat in the skeletal muscles and the diameter of muscle fibers. Furthermore, the drugs lowerd the levels of ROS and MDA (P<0.05, P<0.01) and up-regulated the mRNA and protein levels of SIRT1, PGC1α, and Nrf1 (P<0.05, P<0.01) in the skeletal muscle. ConclusionGegen Qinliantang can ameliorate the glucose and lipid metabolism disorders and insulin resistance in CUG rats by regulating the SIRT1/PGC1α/Nrf1 signaling pathway.

10.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 70-76, 2024.
Article Dans Chinois | WPRIM | ID: wpr-999162

Résumé

ObjectiveTo study the effect of Xihuangwan extract on mitochondrial energy metabolism in ovarian cancer SKOV3 and HEY cells and to explore the underlying mechanism. MethodSKOV3 and HEY cells were cultured in vitro and treated with different concentrations (0, 5, 10, 15, 20 g·L-1) of Xihuangwan extract. Methyl thiazolyl tetrazolium (MTT) was used to examine the viability of SKOV3 and HEY cells treated with Xihuangwan extract. The adenosine-triphosphate (ATP) levels in SKOV3 and HEY cells were measured by kit. Flow cytometry was employed to measure the content of reactive oxygen species (ROS) in cells. Western blot was employed to determine the protein levels of peroxisome proliferator-activated receptor-γ co-activator 1α (PGC1α), transcription factor A, mitochondrial (TFAM), translocase of outer mitochondrial membrane 20 (TOMM20), and aplasia Ras homologue member Ⅰ (ARHⅠ) in SKOV3 and HEY cells. Mito-Tracker Green staining was used to observe the morphological changes of mitochondria in SKOV3 and HEY cells. ResultCompared with blank group, Xihuangwan extract treatment for 24, 48 h inhibited the viability of SKOV3 and HEY cells in a concentration-dependent manner (P<0.05, P<0.01). Compared with blank group, Xihuangwan extract (10, 15, 20 g·L-1) groups presented lowered ATP levels (P<0.05, P<0.01), and the 20 g·L-1 Xihuangwan extract group had lower ATP level than the 10 and 15 g·L-1 Xihuangwan extract groups (P<0.05). Compared with blank group, Xihuangwan extract increased the content of ROS in SKOV3 and HEY cells in a concentration-dependent manner (P<0.05, P<0.01), and the 20 g·L-1 Xihuangwan extract group had higher ROS content than the 10 g·L-1 Xihuangwan extract group (P<0.05). Compared with blank group, Xihuangwan extract up-regulated the expression level of ARHⅠ protein in SKOV3 and HEY cells in a concentration-dependent manner (P<0.01), and the expression levels of ARHⅠ protein was higher in the 20 g·L-1 Xihuangwan extract group than in the 10 and 15 g·L-1 Xihuangwan extract groups (P<0.05). Compared with the blank group, Xihuangwan extract down-regulated the protein levels of PGC1α, TFAM, and TOMM20 in SKOV3 and HEY cells in a concentration-dependent manner (P<0.05, P<0.01), and the protein levels of TFAM and TOMM20 in the HEY cells treated with 20 g·L-1 Xihuangwan extract were lower than those in the HEY cells treated with 10, 15 g·L-1 Xihuangwan extract (P<0.05). Compared with the blank group, 20 g·L-1 Xihuangwan extract decreased the Mito-Tracker fluorescence intensity of SKOV3 and HEY cells (P<0.05). ConclusionXihuangwan can compromise the mitochondrial function of ovarian cancer SKOV3 and HEY cells and reduce cell energy metabolism to inhibit the proliferation of SKOV3 and HEY cells by up-regulating ARHⅠ and inhibiting PGC1α/TFAM signaling axis.

11.
Acta Pharmaceutica Sinica ; (12): 368-373, 2024.
Article Dans Chinois | WPRIM | ID: wpr-1016637

Résumé

This study aimed to investigate halofuginone's inhibitory effect and mechanism on the activity of hepatocellular carcinoma cells. HepG2 cells were used to detect the effects of halofuginone. After treatment, cell activity, cell migration, cell cycle, and cell apoptosis were detected by CCK-8, transwell, and flow cytometry, respectively. The expression levels of growth and metabolism-related factors such as citrate synthase (CS), ketoglutarate dehydrogenase (OGDH), and isocitrate deoxygenase (IDH) were detected by real-time quantitative PCR and Western blot. Compared with the control group, the activity of HepG2 cells was significantly inhibited by halofuginone (P < 0.01), the migration rate of HepG2 cells was decreased (P < 0.01), the apoptosis of HepG2 cells was induced (P < 0.01), and the cell cycle was arrested in S phase (P < 0.01). The expression levels of tricarboxylic acid key enzymes CS, IDH3, and OGDH were up-regulated, the expression level of isocitrate dehydrogenase isoenzymes IDH1 and IDH2 were down-regulation. In conclusion, halofuginone can inhibit the proliferation and migration of HepG2 cells and promote apoptosis in a dose-dependent manner, which may be due to the promotion of the aerobic metabolism of cells.

12.
Acta Pharmaceutica Sinica ; (12): 608-615, 2024.
Article Dans Chinois | WPRIM | ID: wpr-1016633

Résumé

Based on bone metastasis potential of mouse breast cancer 4T1 cells, the bone disseminated breast tumor cells 4T1 (B-4T1) were acquired through the screening of 6-mercaptopurine. The characteristics of B-4T1 were studied by morphological observation, proliferation assay, expression of epithelial and mesenchymal cell markers detection, transcriptome sequencing, and tumor formation experiments. The results showed that B-4T1 was round and spindle-shaped than primary 4T1 cells, and its proliferation rate was reduced, as well as epithelial cell adhesion molecule (EpCAM) and E-cadherin expression. The transcript level of N-cadherin was increased in the B-4T1, but not vimentin, indicating that B-4T1 had partial epithelial mesenchymal transition. Besides, B-4T1 had higher fatty acid metabolism and better tumor formation capacity. This study lays the experimental foundation for the basic study of metastasis in breast cancer. All animal experiments in this paper were conducted in accordance with the standards of the Animal Ethics Committee of China Pharmaceutical University.

13.
Acta Pharmaceutica Sinica ; (12): 511-519, 2024.
Article Dans Chinois | WPRIM | ID: wpr-1016627

Résumé

Cells undergo glucose metabolism reprogramming under the influence of the inflammatory microenvironment, changing their primary mode of energy supply from oxidative phosphorylation to aerobic glycolysis. This process is involved in all stages of inflammation-related diseases development. Glucose metabolism reprogramming not only changes the metabolic pattern of individual cells, but also disrupts the metabolic homeostasis of the body microenvironment, which further promotes aerobic glycolysis and provides favourable conditions for the malignant progression of inflammation-related diseases. The metabolic enzymes, transporter proteins, and metabolites of aerobic glycolysis are all key signalling molecules, and drugs can inhibit aerobic glycolysis by targeting these specific key molecules to exert therapeutic effects. This paper reviews the impact of glucose metabolism reprogramming on the development of inflammation-related diseases such as inflammation-related tumours, rheumatoid arthritis and Alzheimer's disease, and the therapeutic effects of drugs targeting glucose metabolism reprogramming on these diseases.

14.
Journal of Sun Yat-sen University(Medical Sciences) ; (6): 233-242, 2024.
Article Dans Chinois | WPRIM | ID: wpr-1016444

Résumé

ObjectiveTo explore the effect of precocious puberty on glucose metabolism and lipid metabolism in female rats. MethodsSixty two-day-old female rats were randomly divided into 2 groups. When aged 5 days, the precocious puberty group and normal group were given a single subcutaneous injection of danazol and solvent soybean oil respectively. The vaginal opening of rats was monitored from their 21 days of age. After 12 hours of fasting, all successful modeling rats were randomly executed within 3 days after vaginal opening, when aged 7 and 12 weeks. Then we measured the rats’ body weight and length, determined the concentrations of glucose, insulin, blood lipids, estradiol, leptin and adiponectin with enzyme-linked immunosorbent assay and observed the pathological changes of perirenal fat, uterus and ovary. ResultsFor body weight and length, rats in the precocious puberty group were smaller than those in the normal group within 3 days after vaginal opening, but which did not affect their subsequent growth and development, and there was no significant difference between the two groups at 7 and 12 weeks of age. Within 3 days after vaginal opening, insulin levels had significant difference between the two groups (P = 0.001), the precocious group showed hyperinsulinemia and increased number of perirenal adipocytes. At three execution times, no significant difference was noted in estradiol, leptin and adiponectin levels between the two groups. The same was true in the ratios of ovary or uterus to body weight between the two groups. ConclusionsPrecocious puberty makes earlier onset of pubertal development and allows body maladaptation to the sudden changes of the internal environment. However, the changes due to precocious puberty are temporary and reversible, and they may become normal in adulthood.

15.
Journal of Sun Yat-sen University(Medical Sciences) ; (6): 216-225, 2024.
Article Dans Chinois | WPRIM | ID: wpr-1016442

Résumé

ObjectiveTo study the anti-inflammatory effects of Blumea balsamifera (L.) DC oil (BBO) based on nuclear factor kappa-B (NF-κB) nonclassical and arachidonic acid (AA) pathway. MethodsEffects of BBO on the production of slow reacting substance of anaphylaxis (SRS-A) were detected by the ileal smooth muscle method. The contents of prostaglandin E2 (PGE2) and leukotriene B4 (LTB4) in lipopolysaccharides (LPS) -induced macrophages were detected by ELISA kit. The expression of COX-2, 5-LOX, FLAP and RelB were detected by qRT-PCR. Western blot was performed to detect the effects of BBO on the level of NF-κB nonclassical pathway proteins TNF receptor associated factor 3 (TRAF3), TNF receptor associated factor 2 (TRAF2), NF-κB-inducing kinase (NIK), p100 and RelB. ResultsThe contractile tension of guinea pig ileum was reduced (P<0.001), and the SRS-A production inhibition rate reached 65.34% at 1mg·mL-1 BBO concentration. Compared with LPS group, BBO reduced the concentrations of PGE2 (P<0.05) and LTB4 (P<0.05), and decreased the expressions of COX-2 (P<0.05), 5-LOX (P<0.05) and FLAP (P<0.05) in AA pathway at concentrations of 40-80 μg·mL-1. Moreover, 40-80 μg·mL-1 BBO decreased the concentrations of TRAF3 (P<0.05), TRAF2 (P<0.05), and NIK (P<0.05), and further inhibited the phosphorylation of p100 (P<0.05), as well as the level of the transcription factor RelB in genes (P<0.05) and proteins (P<0.05) in nonclassical NF-κB pathway, whereas BBO did not cause such changes. ConclusionBBO may potentially exert its anti-inflammatory effects by suppressing the regulatory proteins TRAF3 and TRAF2 and the transcription factor RelB in NF-κB nonclassical pathway. The inhibitory action extending to the induction kinase function of NIK, further hindering the phosphorylation of p100 and its binding with the transcription factor RelB. Consequently, downstream elements in the AA pathway, including the pivotal rate-limiting enzymes COX-2, 5-LOX and FLAP, were altered. This modulation influences the levels of inflammatory mediators such as PGE2 and LTB4.

16.
Journal of Public Health and Preventive Medicine ; (6): 129-131, 2024.
Article Dans Chinois | WPRIM | ID: wpr-1016429

Résumé

The incidence of infertility disorders is increasing year by year, affecting about 12-15% of women of reproductive age worldwide. Polycystic ovary syndrome (PCOS) is one of the common causes of infertility. In recent years, the incidence rate of PCOS has increased year by year, but the improvement of endocrine and metabolic dysfunction and pregnancy outcomes in patients with PCOS are not satisfactory. There is a consensus both domestically and internationally that improving metabolic function and endocrine abnormalities in PCOS patients can increase their pregnancy rate. Therefore, it is important to explore the improvement of metabolic function in patients with PCOS. This article reviews the progress of basic research on improving metabolic function in patients with PCOS.

17.
Chinese Journal of Clinical Pharmacology and Therapeutics ; (12): 68-75, 2024.
Article Dans Chinois | WPRIM | ID: wpr-1014570

Résumé

AIM: To analyze the distribution frequency of gene polymorphisms of β receptor blockers, angiotensin receptor antagonists, angiotensin converting enzyme inhibitors, calcium antagonists, and diuretics in hypertensive patients from southern Anhui province, and provide a theoretical basis for gene detection of hypertension drugs and personalized medication. METHODS: Drug gene testing information from 839 hospitalized patients with hypertension at Yijishan Hospital of Wannan Medical College from July 2021 to April 2023 were collected, and the distribution frequency of each gene locus were analyzed. RESULTS: The genotype frequencies of ACE (I/D) I/I, I/D, and D/D were 42.1%, 46.0%, and 11.9%, respectively. the genotype frequencies of ADRB1 (1165G>C) G/G, G/C, and C/C were 8.3%, 40.0%, and 51.6%, respectively. The genotype frequencies of AGTR1 (1166A>C) A/A, A/C, and C/C were 90.2%, 9.8%, and 0.0%. The genotype frequencies of CYP2C9*3 (1075A>C) *1/*1, *1/*3, and *3/*3 were 91.3%, 8.7%, and 0.0%, respectively; the genotype frequencies of CYP2D6* 10 (100C > T) *1/*1, *1/*10, and *10/*10 were 25.0%, 36.6%, and 38.4%, respectively. The genotype frequencies of CYP3A5*3 (6986A>G) *1/*1, *1/*3, and *3/*3 were 7.0%, 39.0%, and 54.0%, respectively. The frequencies of NPPA (2238T>C) T/T, T / C, and C / C genotypes were 97.9%, 2.1%, and 0.0%, respectively. In addition, there was a significant difference in the genotype distribution frequency of multiple drug related gene loci in southern Anhui compared to other regions in China (P< 0.05). CONCLUSION: The genotype distribution frequency of hypertensive drug related gene loci had certain bias in southern Anhui, and were significant different from other regions in China, indicating that conducting genetic polymorphism testing of hypertensive drugs had certain guiding significance for the individualized application of hypertensive drugs in southern Anhui.

18.
Chinese Pharmacological Bulletin ; (12): 405-409, 2024.
Article Dans Chinois | WPRIM | ID: wpr-1013648

Résumé

Cardiovascular diseases ( CVDs ) are the leading cause of death worldwide and pose a serious threat to human health. Silent information regulator 5 ( SIRT5 ) , which is widely distributed in cardiac myocytes, vascular smooth muscle cells and endothelial cells,as a novel deacylation-modifying enzyme,plays an important role in CVDs through deacetylation, desuccinylation and demalonylation. This review summarizes the pathophysiolog-ical mechanism of SIRT5 from the aspects of energy metabolism, regulation of inflammatory response and oxidative stress, apart from the role of SIRT5 in CVDs such as myocardial infarction, myocardial hypertrophy, arrhythmia, atherosclerosis and heart failure. This review also figures out the current research progress of SIRT5 -related inhibitors and agonists, so as to provide strategies for targeting SIRT5 to prevent and treat CVDs.

19.
Chinese Pharmacological Bulletin ; (12): 390-396, 2024.
Article Dans Chinois | WPRIM | ID: wpr-1013633

Résumé

Aim To express and purify recombinant hCGH-CTP fusion protein in high-density suspension culture of Chinese hamster ovary cells (CHO-S), and to verify the lipid accumulation effect of rhCGH-CTP on 3T3-L1 mature adipocytes. Methods The recombinant protein expression vector (pcDNA3. 1-rhCGH-CTP) was constructed, achieved by fusing the human glycoprotein hormone beta 5/alpha 2 cDNA with CTP Linker. The expression plasmid was transiently transfected into the suspended CHO-S to express rhCGH-CTP protein and then purified, and the protein biological activity was verified. Intervention with 3T3-L1 mature adipocyte cells for 24 h was performed to detect the changes of intracellular triglyceride (TG) level. Results Western blot results showed that rhCGH-CTP protein was successfully expressed in CHO-S cells, and the yield was up to 715. 4 mg • L~ . The secreted protein was purified by AKTA pure system with higher purity that was up to 90% as identified by SDS-PAGE. In addition, the intracellular cAMP content of mature adipocytes with high expression of TSHR gene significantly increased after intervention with different concentrations of rhCGH-CTP protein by ELISA kit, indicating that rhCGH-CTP protein had biological activity. Oil red 0 staining showed that compared with the control group, the lipid content of mature adipocytes in the intervention groups with different concentrations of rhCGH-CTP protein significantly decreased (P < 0. 05) . Conclusions The rhCGH-CTP protein has been successfully expressed and purified with biological activity, and effectively reduce TG. This research provides an important theoretical basis for further revealing the physiological role of CGH protein and its potential application in clinical practice.

20.
Chinese Pharmacological Bulletin ; (12): 16-19, 2024.
Article Dans Chinois | WPRIM | ID: wpr-1013593

Résumé

Senile osteoporosis (SOP) is a systemic bone disease characterized by increased susceptibility to fractures. The pathogenesis of SOP is complex and not well understood. Currently, the rapid aging model mouse, senescence accelerated mouse prone 6 (SAMP6), is an ideal model for studying the mechanisms of SOP development and exploring its prevention and treatment. This model exhibits characteristics including increased bone fragility, degradation of bone microstructure, loss of bone matrix, and abnormal metabolism and dysfunction of bone cells, faithfully replicating the process of SOP occurrence and progression at both macroscopic and microscopic levels.

SÉLECTION CITATIONS
Détails de la recherche