Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 2 de 2
Filtrer
Plus de filtres








Gamme d'année
1.
Chinese Journal of Biotechnology ; (12): 4231-4242, 2021.
Article de Chinois | WPRIM | ID: wpr-921501

RÉSUMÉ

2-Hydroxybutyric acid (2-HBA) is an important intermediate for synthesizing biodegradable materials and various medicines. Chemically synthesized racemized 2-HBA requires deracemization to obtain optically pure enantiomers for industrial application. In this study, we designed a cascade biosynthesis system in Escherichia coli BL21 by coexpressing L-threonine deaminase (TD), NAD-dependent L-lactate dehydrogenase (LDH) and formate dehydrogenase (FDH) for production of optically pure (S)-2-HBA from bulk chemical L-threonine (L-Thr). To coordinate the production rate and the consumption rate of the intermediate 2-oxobutyric acid in the multi-enzyme cascade catalytic reactions, we explored promoter engineering to regulate the expression levels of TD and FDH, and developed a recombinant strain P21285FDH-T7V7827 with a tunable system to achieve a coordinated multi-enzyme expression. The recombinant strain P21285FDH-T7V7827 was able to efficiently produce (S)-2-HBA with the highest titer of 143 g/L and a molar yield of 97% achieved within 16 hours. This titer was approximately 1.83 times than that of the highest yield reported to date, showing great potential for industrial application. Our results indicated that constructing a multi-enzyme-coordinated expression system in a single cell significantly contributed to the biosynthesis of hydroxyl acids.


Sujet(s)
Escherichia coli/génétique , Formate dehydrogenases , Hydroxy-butyrates , Thréonine dehydratase
2.
Chinese Journal of Biotechnology ; (12): 992-1001, 2020.
Article de Chinois | WPRIM | ID: wpr-826877

RÉSUMÉ

In this study, Escherichia coli BL21 (DE3) was used as the host to construct 2 recombinant E. coli strains that co-expressed leucine dehydrogenase (LDH, Bacillus cereus)/formate dehydrogenase (FDH, Ancylobacter aquaticus), or leucine dehydrogenase (LDH, Bacillus cereus)/alcohol dehydrogenase (ADH, Rhodococcus), respectively. L-2-aminobutyric acid was then synthesized by L-threonine deaminase (L-TD) with LDH-FDH or LDH-ADH by coupling with two different NADH regeneration systems. LDH-FDH process and LDH-ADH process were optimized and compared with each other. The optimum reaction pH of LDH-FDH process was 7.5, and the optimum reaction temperature was 35 °C. After 28 h, the concentration of L-2-aminobutyric acid was 161.8 g/L with a yield of 97%, when adding L-threonine in batches for controlling 2-ketobutyric acid concentration less than 15 g/L and using 50 g/L ammonium formate, 0.3 g/L NAD+, 10% LDH-FDH crude enzyme solution (V/V) and 7 500 U/L L-TD. The optimum reaction pH of LDH-ADH process was 8.0, and the optimum reaction temperature was 35 °C. After 24 h, the concentration of L-2-aminobutyric acid was 119.6 g/L with a yield of 98%, when adding L-threonine and isopropanol (1.2 times of L-threonine) in batches for controlling 2-ketobutyric acid concentration less than 15 g/L, removing acetone in time and using 0.3 g/L NAD⁺, 10% LDH-ADH crude enzyme solution (V/V) and 7 500 U/L L-TD. The process and results used in this paper provide a reference for the industrialization of L-2-aminobutyric acid.


Sujet(s)
Amino-butyrates , Métabolisme , Escherichia coli , Génétique , Formate dehydrogenases , Métabolisme , Leucine dehydrogenase , Métabolisme , NAD , Métabolisme
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE