Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 1 de 1
Filtrer
Plus de filtres








Gamme d'année
1.
Article de Anglais | WPRIM | ID: wpr-150122

RÉSUMÉ

Osteoclasts are multinucleated cells formed mainly on bone surfaces in response to cytokines by fusion of bone marrow-derived myeloid lineage precursors that circulate in the blood. Major advances in understanding of the molecular mechanisms regulating osteoclast formation and functions have been made in the past 20 years since the discovery that their formation requires nuclear factor-kappa B (NF-kappaB) signaling and that this is activated in response to the essential osteoclastogenic cytokine, receptor activator of NF-kappaB ligand (RANKL), which also controls osteoclast activation to resorb (degrade) bone. These studies have revealed that RANKL and some pro-inflammatory cytokines, including tumor necrosis factor, activate NF-kappaB and downstream signaling, including c-Fos and nuclear factor of activated T-cells, cytoplasmic 1 (NFATc1), and inhibition of repressors of NFATc1 signaling, to positively regulate osteoclast formation and functions. However, these cytokines also activate NF-kappaB signaling that can limit osteoclast formation through the NF-kappaB signaling proteins, TRAF3 and p100, and the suppressors of c-Fos/NFATc1 signaling, IRF8, and RBP-J. This paper reviews current understanding of how NF-kappaB signaling is involved in the positive and negative regulation of cytokine-mediated osteoclast formation and activation.


Sujet(s)
Cytokines , Facteur de transcription NF-kappa B , Facteurs de transcription NFATC , Ostéoclastes , Ligand de RANK , Récepteur activateur du facteur nucléaire Kappa B , Facteur-3 associé aux récepteurs de TNF , Facteur de nécrose tumorale alpha
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE