Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 3 de 3
Filtrer
Plus de filtres








Gamme d'année
1.
Res. Biomed. Eng. (Online) ; 31(4): 295-306, Oct.-Dec. 2015. tab, graf
Article de Anglais | LILACS | ID: biblio-829449

RÉSUMÉ

Abstract Introduction The main drawback of a Brain-computer Interface based on Steady-State Visual Evoked Potential (SSVEP-BCI) that detects the emergence of visual evoked potentials (VEP) in reaction to flickering stimuli is its muscular dependence due to users must redirect their gaze to put the target stimulus in their field of view. In this work, a novel setup is evaluated in which two stimuli are placed together in the center of users' field of view, but with dissimilar distances from them, so that the target selection is performed by focus shifting instead of head, neck and/or eyeball movements. Methods A model of VEP generation for the novel setup was developed. The Spectral F-test based on Bartett periodogram was used to evaluate the null hypothesis of absence of effects of the non-focused stimulus (NFS) within the VEP elicited by the focused stimulus (FS). To reinforce that there is not statistical evidence to support the presence of NFS effects, the PSDA detection method was employed to find the frequency of FS. Electroencephalographic signals of nine subjects were recorded. Results Approximately in 80% of the tests, the null hypothesis with 5% level of significance was non-rejected at the fundamental frequency of NFS. The average of the accuracy rate attained with PSDA detection method was 79.4%. Conclusion Results of this work become further evident to state that if the focused stimulus (FS) will be able to elicit distinguishable VEP pattern regardless the non-focused stimulus (NFS) is also present.

2.
Res. Biomed. Eng. (Online) ; 31(4): 285-294, Oct.-Dec. 2015. tab, graf
Article de Anglais | LILACS | ID: biblio-829451

RÉSUMÉ

Introduction : This paper presents a detection method for upper limb movement intention as part of a brain-machine interface using EEG signals, whose final goal is to assist disabled or vulnerable people with activities of daily living. Methods EEG signals were recorded from six naïve healthy volunteers while performing a motor task. Every volunteer remained in an acoustically isolated recording room. The robot was placed in front of the volunteers such that it seemed to be a mirror of their right arm, emulating a Brain Machine Interface environment. The volunteers were seated in an armchair throughout the experiment, outside the reaching area of the robot to guarantee safety. Three conditions are studied: observation, execution, and imagery of right arm’s flexion and extension movements paced by an anthropomorphic manipulator robot. The detector of movement intention uses the spectral F test for discrimination of conditions and uses as feature the desynchronization patterns found on the volunteers. Using a detector provides an objective method to acknowledge for the occurrence of movement intention. Results When using four realizations of the task, detection rates ranging from 53 to 97% were found in five of the volunteers when the movement was executed, in three of them when the movement was imagined, and in two of them when the movement was observed. Conclusions Detection rates for movement observation raises the question of how the visual feedback may affect the performance of a working brain-machine interface, posing another challenge for the upcoming interface implementation. Future developments will focus on the improvement of feature extraction and detection accuracy for movement intention using EEG data.

3.
Rev. bras. eng. biomed ; 29(4): 321-328, dez. 2013. graf
Article de Anglais | LILACS | ID: lil-697279

RÉSUMÉ

INTRODUCTION: The detection of the somatosensory response (SR) is an important tool for the neurophysiological evaluation in the intra and post-operative period of some vascular and spine surgeries. Particularly, the SR identification with a maximum false positive ratio by means of Objective Response Detection (ORD) techniques could lead to a less subjective procedure. In this work a novel ORD, the Rice Detector (RD), is presented and its theoretical critical value is obtained. METHODS: The probability of detection (PD) of RD is assessed for different numbers of eletroencephalographic (EEG) signal epochs (M = 30, 60, 120, 240) and signal-to-noise ratios (-20 to 10 dB, in steps of 1 dB) by means of simulation. The simulated PD curves (PDc) are compared with the theoretical ones and with the PDc of the Magnitude-Squared Coherence (MSC), a well-known ORD technique. The performance of RD and MSC are also compared for real EEG data. The comparison is based on the DP for estimates calculated with M = 30, 60, 120 and 240 epochs. RESULTS: The results showed that the simulated PDc follow the theoretical ones and both the MSC and RD present similar performance, with slight advantage for this latter at low M-values. However, for real data, no statistical significant difference (proportion test with alpha=0.05) was found between MSC and RD. CONCLUSION: Both techniques presented mean detection rates varying from 70% to 90%, even for intermediate M-value (120 epochs), and can be useful for evoked response detection applications.

SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE