RÉSUMÉ
Accurate self-motion perception, which is critical for organisms to survive, is a process involving multiple sensory cues. The two most powerful cues are visual (optic flow) and vestibular (inertial motion). Psychophysical studies have indicated that humans and nonhuman primates integrate the two cues to improve the estimation of self-motion direction, often in a statistically Bayesian-optimal way. In the last decade, single-unit recordings in awake, behaving animals have provided valuable neurophysiological data with a high spatial and temporal resolution, giving insight into possible neural mechanisms underlying multisensory self-motion perception. Here, we review these findings, along with new evidence from the most recent studies focusing on the temporal dynamics of signals in different modalities. We show that, in light of new data, conventional thoughts about the cortical mechanisms underlying visuo-vestibular integration for linear self-motion are challenged. We propose that different temporal component signals may mediate different functions, a possibility that requires future studies.
Sujet(s)
Animaux , Humains , Perception du mouvement/physiologie , Théorème de Bayes , Flux optique , Signaux , Labyrinthe vestibulaire/physiologie , Stimulation lumineuse , Perception visuelle/physiologieRÉSUMÉ
Abstract Introduction In this work, the effect of a dynamic visual stimulation (DS) protocol was used to induce egomotion, the center of pressure (COP) displacement response. Methods DS was developed concerning the scenario structure (chessboard-pattern floor and furniture) and luminance. To move the scenario in a discrete forward (or backward) direction, the furniture is expanded (or reduced) and the black and white background is reversed during floor translation while the luminance is increased (or reduced) by steps of 2 cd/m2. This protocol was evaluated using COP signals from 29 healthy volunteers: standing on a force platform observing the virtual scene (1.72 × 1.16 m) projected 1 m ahead (visual incidence angle: θl = 81.4° and θv = 60.2°), which moves with constant velocity (2 m/s) during 250 ms. A set of 100 DS was applied in random order, interspersed by a 10 s of static scene. Results The Tukey post-hoc test (p < 0.001) indicated egomotion in the same direction of DS. COP displacement increased over stimulation (8.4 ± 1.7 to 22.6 ±5.3 mm), as well as time to recover stability (4.1 ± 0.4 to 7.2 ± 0.6 s). The peak of egomotion during DSF occurred 200 ms after DSB (Wilcoxon, p = 0.002). Conclusion The dynamic configuration of this protocol establishes virtual flow effects of linear egomotion dependent on the direction of the dynamic visual stimulation. This finding indicates the potential application of the proposed virtual dynamic stimulation protocol to investigate the cortical visual evoked response in postural control studies.