Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 281
Filtre
1.
Acta Anatomica Sinica ; (6): 25-31, 2024.
Article Dans Chinois | WPRIM | ID: wpr-1015158

Résumé

Objective To analyse the analgesic effect and possible mechanism of panax notoginseng saponin (PNS) on mouse models of chronic inflammatory pain caused by complete Freund’s adjuvant (CFA). Methods A total of 48 male C57BL/ 6J mice were divided randomly into four groups: normal saline control group (Ctrl), CFA group (CFA), CFA + PNS group (CFA+PNS), CFA + dexamethasone (DEX) group (CFA+DEX). Von Frey filaments were used to detect mechanical pain in mice. Immunohistochemistry was used to detect the number and morphological changes of glial fibrillary acidic protein (GFAP) positive astrocytes. Western blotting was used to detect the expressions of GFAP, nucleotide-binding and oligomerization domain(NOD)-like receptor thermal protein domain associated protein 3 (NLRP3), apoptosis-associated speck-like protein containing a CARD (ASC), Caspase-1, interleukin (IL)-1β, and IL-18 in mice’s spinal cord segments in each group. Results Compared with the Ctrl group, mice in the CFA group showed a significant decrease in mechanical pain thresholds at day 1, day 3, day 5, day 7, and day 14. Additionally, there was a significant decrease in NLRP3, ASC, Caspase-1, IL-1β and IL-18 in the spinal cord of the mice. PNS intervention could relieve mechanical pain and down-regulate the expressions of NLRP3, ASC, Caspase-1, IL-1β and IL-18 in the spinal cord of mice, with no significant difference compared with the CFA+DEX group. CFA group mice had significantly more GFAP positive cells in their posterior horns than Ctrl group mice, as measured by immunohistochemistry; PNS intervention decreased the number of GFAP positive cells in the posterior horn of the spinal cord in model mice;DEX had no effect on the number of GFAP positive cells in the dorsal horn of spinal cord. According to Western blotting results, GFAP expression in the spinal cord of the CFA group was significantly more than that of the Ctrl group; PNS intervention significantly reduced GFAP expression in the spinal cord of CFA group mice;DEX had no effect on the expression of GFAP in the posterior horn of spinal cord. Conclusion PNS has a good alleviating effect on inflammatory pain, and its mechanism may be related to inhibition of astrocyte activation and NLRP3 inflammasome activation.

2.
China Pharmacy ; (12): 695-700, 2024.
Article Dans Chinois | WPRIM | ID: wpr-1013104

Résumé

OBJECTIVE To investigate the effect and mechanism of Panax notoginseng saponins (PNS) on wound healing after anal fistula surgery in rats by regulating the hypoxia-inducible factor-1α (HIF-1α)/vascular endothelial growth factor (VEGF)/ vascular endothelial growth factor receptor-2 (VEGFR2) signaling pathway. METHODS SD rats were selected to establish a postoperative rat model of anal fistula by infecting wound with Escherichia coli. The model rats were randomly grouped into model group, PNS low-dose and high-dose groups (15, 30 mg/cm2), high-dose of PNS+2-methoxyestradiol (2ME2) group (PNS 30 mg/cm2+HIF-1α inhibitor 2ME2 4 mg/kg), with 10 rats in each group. Another 10 normal rats were selected for back hair removal treatment as the control group. Each drug group was injected with the corresponding drug solution intramuscularly or (and) intraperitoneally, once a day, for 3 weeks. After the last administration, the wound healing rate (excluding the control group), microvascular density (MVD), the expression of collagen Ⅰ and fibronectin (FN) in the wound tissue were detected in each group; the levels of angiogenic factors [VEGF, E-mail:842710813@qq.com angiopoietin-Ⅰ (Ang-Ⅰ), Ang-Ⅱ] in serum, the levels of inflammatory factors [interleukin-6 (IL-6) and IL-2] in serum binggui7183@163.com and wound tissue as well as the expressions of the related proteins of HIF-1α/VEGF/VEGFR2 signaling pathway in the wound tissue of rats were also detected in each group. RESULTS The MVD, the expression of collagen Ⅰ and FN in the wound tissue, and the levels of IL-6 and IL-2 in serum and wound tissue of rats increased significantly in the model group, compared to the control group (P<0.05), while the serum levels of VEGF, Ang- Ⅰ and Ang-Ⅱ decreased significantly (P<0.05). The wound healing rate, the MVD in wound tissue, the serum levels of VEGF, Ang-Ⅰ and Ang-Ⅱ, the expressions of collagen Ⅰ and FN in the wound tissue, and protein expressions of HIF-1α, VEGF and VEGFR2 in the PNS low-dose and high-dose groups increased significantly, compared to the model group (P<0.05), while the levels of IL-6 and IL-2 in serum and wound tissue decreased significantly (P<0.05); the high-dose PNS had a stronger effect (P< 0.05). 2ME2 could weaken the effect of PNS on above indicators of rats after anal fistula surgery (P<0.05). CONCLUSIONS PNS can promote the production of angiogenic factors and inhibit the production of pro-inflammatory factors, thereby promoting wound healing in rats after anal fistula surgery. The above effects are related to the activation of HIF-1α/VEGF/VEGFR2 signaling pathway.

3.
China Journal of Chinese Materia Medica ; (24): 1483-1490, 2023.
Article Dans Chinois | WPRIM | ID: wpr-970619

Résumé

In this study, the effect of brassinosteroid(BR) on the physiological and biochemical conditions of 2-year-old Panax notoginseng under the cadmium stress was investigated by the pot experiments. The results showed that cadmium treatment at 10 mg·kg~(-1) inhibited the root viability of P. notoginseng, significantly increased the content of H_2O_2 and MDA in the leaves and roots of P. noto-ginseng, caused oxidative damage of P. notoginseng, and reduced the activities of SOD and CAT. Cadmium stress reduced the chlorophyll content of P. notoginseng, increased leaf F_o, reduced F_m, F_v/F_m, and PIABS, and damaged the photosynthesis system of P. notoginseng. Cadmium treatment increased the soluble sugar content of P. notoginseng leaves and roots, inhibited the synthesis of soluble proteins, reduced the fresh weight and dry weight, and inhibited the growth of P. notoginseng. External spray application of 0.1 mg·L~(-1) BR reduced the H_2O_2 and MDA content in P. notoginseng leaves and roots under the cadmium stress, alleviated cadmium-induced oxidative damage to P. notoginseng, improved the antioxidant enzyme activity and root activity of P. notoginseng, increased the content of chlorophyll, reduced the F_o of P. notoginseng leaves, increased F_m, F_v/F_m, and PIABS, alleviated the cadmium-induced damage to the photosynthesis system, and improved the synthesis ability of soluble proteins. In summary, BR can enhance the anti-cadmium stress ability of P. notoginseng by regulating the antioxidant enzyme system and photosynthesis system of P. notoginseng under the cadmium stress. In the context of 0.1 mg·L~(-1) BR, P. notoginseng can better absorb and utilize light energy and synthesize more nutrients, which is more suitable for the growth and development of P. notoginseng.


Sujets)
Cadmium/métabolisme , Antioxydants/pharmacologie , Panax notoginseng , Brassinostéroïdes/pharmacologie , Chlorophylle/métabolisme , Racines de plante/métabolisme , Stress physiologique
4.
China Journal of Chinese Materia Medica ; (24): 1203-1211, 2023.
Article Dans Chinois | WPRIM | ID: wpr-970591

Résumé

To study the residue and dietary risk of propiconazole in Panax notoginseng and the effects on physiological and bioche-mical properties of P. notoginseng, we conducted foliar spraying of propiconazole on P. notoginseng in pot experiments. The physiolo-gical and biochemical properties studied included leaf damage, osmoregulatory substance content, antioxidant enzyme system, non-enzymatic system, and saponin content in the main root. The results showed that at the same application concentration, the residual amount of propiconazole in each part of P. notoginseng increased with the increase in the times of application and decreased with the extension of harvest interval. After one-time application of propiconazole according to the recommended dose(132 g·hm~(-2)) for P. ginseng, the half-life was 11.37-13.67 days. After 1-2 times of application in P. notoginseng, propiconazole had a low risk of dietary intake and safety threat to the population. The propiconazole treatment at the recommended concentration and above significantly increased the malondialdehyde(MDA) content, relative conductivity, and osmoregulatory substances and caused the accumulation of reactive oxygen species in P. notoginseng leaves. The propiconazole treatment at half(66 g·hm~(-2)) of the recommended dose for P. ginseng significantly increased the activities of superoxide dismutase(SOD), peroxidase(POD), and catalase(CAT) in P. notoginseng leaves. The propiconazole treatment at 132 g·hm~(-2) above inhibited the activities of glutathione reductase(GR) and glutathione S-transferase(GST), thereby reducing glutathione(GSH) content. Proconazole treatment changed the proportion of 5 main saponins in the main root of P. notoginseng. The treatment with 66 g·hm~(-2) propiconazole promoted the accumulation of saponins, while that with 132 g·hm~(-2) and above propiconazole significantly inhibited the accumulation of saponins. In summary, using propiconazole at 132 g·hm~(-2) to prevent and treat P. notoginseng diseases will cause stress on P. notoginseng, while propiconazole treatment at 66 g·hm~(-2) will not cause stress on P. notoginseng but promote the accumulation of saponins. The effect of propiconazole on P. notoginseng diseases remains to be studied.


Sujets)
Panax notoginseng/composition chimique , Panax , Antioxydants/pharmacologie , Saponines/pharmacologie , Glutathion , Appréciation des risques
5.
China Journal of Chinese Materia Medica ; (24): 1087-1097, 2023.
Article Dans Chinois | WPRIM | ID: wpr-970580

Résumé

The present study aimed to explore the main active components and potential mechanisms of Panax notoginseng saponins(PNS) and osteopractic total flavone(OTF) in the treatment of osteoporosis(OP) through network pharmacology, molecular docking and in vitro cell experiments, which was expected to provide a theoretical basis for clinical applications. The blood-entering components of PNS and OTF were obtained from literature search and online database, and their potential targets were obtained from Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform(TCMSP) and SwissTargetPrediction. The OP targets were obtained by means of searching Online Mendelian Inheritance in Man(OMIM) and GeneCards. The common targets of the drug and disease were screened by Venn. Cytoscape was used to construct a "drug-component-target-disease" network, and the core components were screened according to the node degree. The protein-protein interaction(PPI) network of the common targets was constructed by STRING and Cytoscape, and the core targets were screened according to the node degree. GO and KEGG enrichment analysis of potential therapeutic targets were carried out by R language. Molecular docking was used to determine the binding activity of some active components to key targets by AutoDock Vina. Finally, HIF-1 signaling pathway was selected for in vitro experimental verification according to the results of KEGG pathway analysis. Network pharmacology showed that there were 45 active components such as leachianone A, kurarinone, 20(R)-protopanaxatriol, 20(S)-protopanaxatriol, and kaempferol, and 103 therapeutic targets such as IL6, AKT1, TNF, VEGFA and MAPK3 involved. PI3K-AKT, HIF-1, TNF and other signaling pathways were enriched. Molecular docking revealed that the core components had good binding ability to the core targets. In vitro experiments found that PNS-OTF could up-regulate the mRNA expression levels of HIF-1α, VEGFA and Runx2, indicating that the mechanism of PNS-OTF in treating OP may be related to the activation of HIF-1 signaling pathway, and thus PNS-OTF played a role in promoting angiogenesis and osteogenic differentiation. In conclusion, this study predicted the core targets and pathways of PNS-OTF in treating OP based on network pharmacology and carried out in vitro experimental verification, which reflected the characteristics of multi-component, multi-target and multi-pathway synergy of PNS-OTF, and provided new ideas for the future clinical treatment of OP.


Sujets)
Humains , Simulation de docking moléculaire , Pharmacologie des réseaux , Ostéogenèse , Phosphatidylinositol 3-kinases , Ostéoporose , Bases de données génétiques
6.
Chinese journal of integrative medicine ; (12): 333-340, 2023.
Article Dans Anglais | WPRIM | ID: wpr-982273

Résumé

OBJECTIVE@#To evaluate toxicity of raw extract of Panax notoginseng (rPN) and decocted extract of PN (dPN) by a toxicological assay using zebrafish larvae, and explore the mechanism by RNA sequencing assay.@*METHODS@#Zebrafish larvae was used to evaluate acute toxicity of PN in two forms: rPN and dPN. Three doses (0.5, 1.5, and 5.0 µ g/mL) of dPN were used to treat zebrafishes for evaluating the developmental toxicity. Behavior abnormalities, body weight, body length and number of vertebral roots were used as specific phenotypic endpoints. RNA sequencing (RNA-seq) assay was applied to clarify the mechanism of acute toxicity, followed by real time PCR (qPCR) for verification. High performance liquid chromatography analysis was performed to determine the chemoprofile of this herb.@*RESULTS@#The acute toxicity result showed that rPN exerted higher acute toxicity than dPN in inducing death of larval zebrafishes (P<0.01). After daily oral intake for 21 days, dPN at doses of 0.5, 1.5 and 5.0 µ g/mL decreased the body weight, body length, and vertebral number of larval zebrafishes, indicating developmental toxicity of dPN. No other adverse outcome was observed during the experimental period. RNA-seq data revealed 38 genes differentially expressed in dPN-treated zebrafishes, of which carboxypeptidase A1 (cpa1) and opioid growth factor receptor-like 2 (ogfrl2) were identified as functional genes in regulating body development of zebrafishes. qPCR data showed that dPN significantly down-regulated the mRNA expressions of cpa1 and ogfrl2 (both P<0.01), verifying cpa1 and ogfrl2 as target genes for dPN.@*CONCLUSION@#This report uncovers the developmental toxicity of dPN, suggesting potential risk of its clinical application in children.


Sujets)
Animaux , Danio zébré/génétique , Saponines/pharmacologie , Panax notoginseng/composition chimique , Larve , Analyse de séquence d'ARN
7.
Journal of Pharmaceutical Analysis ; (6): 376-387, 2023.
Article Dans Chinois | WPRIM | ID: wpr-991151

Résumé

Panax ginseng(PG)and Panax notoginseng(PN)are highly valuable Chinese medicines(CM).Although both CMs have similar active constituents,their clinical applications are clearly different.Over the past decade,RNA sequencing(RNA-seq)analysis has been employed to investigate the molecular mechanisms of extracts or monomers.However,owing to the limited number of samples in standard RNA-seq,few studies have systematically compared the effects of PG and PN spanning multiple conditions at the transcriptomic level.Here,we developed an approach that simultaneously profiles transcriptome changes for multiplexed samples using RNA-seq(TCM-seq),a high-throughput,low-cost workflow to molecularly evaluate CM perturbations.A species-mixing experiment was conducted to illustrate the accuracy of sample multiplexing in TCM-seq.Transcriptomes from repeated samples were used to verify the robustness of TCM-seq.We then focused on the primary active components,Panax notoginseng sa-ponins(PNS)and Panax ginseng saponins(PGS)extracted from PN and PG,respectively.We also char-acterized the transcriptome changes of 10 cell lines,treated with four different doses of PNS and PGS,using TCM-seq to compare the differences in their perturbing effects on genes,functional pathways,gene modules,and molecular networks.The results of transcriptional data analysis showed that the tran-scriptional patterns of various cell lines were significantly distinct.PGS exhibited a stronger regulatory effect on genes involved in cardiovascular disease,whereas PNS resulted in a greater coagulation effect on vascular endothelial cells.This study proposes a paradigm to comprehensively explore the differences in mechanisms of action between CMs based on transcriptome readouts.

8.
International Journal of Traditional Chinese Medicine ; (6): 852-860, 2023.
Article Dans Chinois | WPRIM | ID: wpr-989708

Résumé

Objective:To explore the mechanism of Ginseng Radix et Rhizoma- Notoginseng Radix et Rhizoma- Chuanxiong Rhizoma medicinal pair in delaying heart aging based on animal experiments, network pharmacology and molecular docking. Methods:Mice were divided into control group, aging group, metformin group and TCM group according to random number table method. All the groups were injected subcutaneously by D-galactose except the control group to build the subacute aging model. Two weeks later, the metformin group was given metformin suspension (150 mg/kg), the TCM group was given Ginseng Radix et Rhizoma- Notoginseng Radix et Rhizoma- Chuanxiong Rhizoma lyophilized powder solution (650 mg/kg), and the control group and aging group were given an equivalent volume of ultrapure water by gastric gavage, once a day, six times a week, for 10 weeks. The level of heart TERT mRNA was detected by PCR; the expression of heart p53 was observed by immunohistochemical staining; the morphology of heart tissue was observed by HE staining. TCMSP and SwissTargetPrediciton databases were used to retrieve the active components and targets of Ginseng Radix et Rhizoma- Notoginseng Radix et Rhizoma- Chuanxiong Rhizoma medicinal pair; TTD, OMIM, Gene, HAGR, DisGeNET and other data platforms were used to screen the targets of heart aging; after the drug and disease targets were intersected, the active components of them were collected; STRING database, Cytoscape 3.8.0 software, etc. were used to make PPI of the intersection targets, and screen out the key targets; FunRich was used to perform enrichment analysis of cellular components, molecular functions, biological processes, and biological signal pathways for key targets; Schr?dinger Maestro software was used to do the molecular docking of the screened active components and key targets, and docking results were visualized via PyMOL 2.1 software. Results:Experiment results showed that Ginseng Radix et Rhizoma- Notoginseng Radix et Rhizoma- Chuanxiong Rhizoma could significantly ameliorate the damage of aging heart tissues, elevate TERT mRNA level, while significantly reducing the positive expression of p53. A total of 32 active components from the medicinal pair were screened, corresponding to 637 target genes. There were 263 targets for heart aging, and 67 intersection targets of drug active component targets and heart aging targets. 31 key targets were obtained after screening. Enrichment analysis showed that molecular functions were related to transcription factor activity and protein-tyrosine kinase activity. Biological processes involved signal transduction and cell communication. Signaling pathways mainly involved PDGFR-beta, PI3K-Akt, S1P1, Glypican, TRAIL, and Glypican 1. The molecular docking results showed that kaempferol, suchilactone, and ginsenoside Rg5_qt in the medicinal pair had a strong binding ability to p53. Conclusion:Ginseng Radix et Rhizoma- Notoginseng Radix et Rhizoma- Chuanxiong Rhizoma may achieve the effect of delaying heart aging by inhibiting p53 expression, providing a foundation for further research on mechanism of invigorating qi and activating blood circulation drugs to delay heart aging.

9.
International Journal of Biomedical Engineering ; (6): 48-54, 2023.
Article Dans Chinois | WPRIM | ID: wpr-989315

Résumé

Objective:To prepare chitosan/gelatin hydrogel composite hemostatic materials loaded with Panax notoginseng (PN/CMC/GMs) and evaluate their performance. Methods:PN/CMC/GMs hydrogel composite hemostatic material were prepared by the freeze-drying method, and their morphology was observed by scanning electron microscopy. Their rheological properties were observed by a rheometer. Their water absorption rate was tested by dissolution. Their biocompatibility was detected by a cytotoxicity assay. Their rapid hemostatic effect was tested using a SD rat liver hemorrhage model.Results:PN/CMC/GMs composite hemostatic materials were prepared in a lattice-like structure with certain porosity. With the increase in Panax notoginseng powder content, the modulus of PN/CMC/GMs increased accordingly, and the mechanical strength increased. PN/CMC/GMs have better water absorption and expansion functions, which can form compression hemostasis and concentrated blood to achieve rapid hemostasis, and have good biocompatibility. Hemostasis experiments showed that the hemostatic time and hemostatic effect of PN, CMC/GMs hemostatic materials on liver injury in rats were better than those of the blank control group. Conclusions:PN/CMC/GMs have good hemostatic effect and biocompatibility and have the potential for further research and clinical application.

10.
Chinese Journal of Natural Medicines (English Ed.) ; (6): 631-640, 2023.
Article Dans Anglais | WPRIM | ID: wpr-1010976

Résumé

Evaluating the consistency of herb injectable formulations could improve their product quality and clinical safety, particularly concerning the composition and content levels of trace ingredients. Panax notoginseng Saponins Injection (PNSI), widely used in China for treating acute cardiovascular diseases, contains low-abundance (10%-25%) and trace saponins in addition to its five main constituents (notoginsenoside R1, ginsenoside Rg1, ginsenoside Re, ginsenoside Rb1, and ginsenoside Rd). This study aimed to establish a robust analytical method and assess the variability in trace saponin levels within PNSI from different vendors and formulation types. To achieve this, a liquid chromatography-triple quadrupole mass spectrometry (LC-MS/MS) method employing multiple ions monitoring (MIM) was developed. A "post-column valve switching" strategy was implemented to eliminate highly abundant peaks (NR1, Rg1, and Re) at 26 min. A total of 51 saponins in PNSI were quantified or relatively quantified using 18 saponin standards, with digoxin as the internal standard. This study evaluated 119 batches of PNSI from seven vendors, revealing significant variability in trace saponin levels among different vendors and formulation types. These findings highlight the importance of consistent content in low-abundance and trace saponins to ensure product control and clinical safety. Standardization of these ingredients is crucial for maintaining the quality and effectiveness of PNSI in treating acute cardiovascular diseases.


Sujets)
Ginsénosides , Saponines , Chimiométrie , Panax notoginseng , Maladies cardiovasculaires , Chromatographie en phase liquide , Spectrométrie de masse en tandem
11.
China Journal of Chinese Materia Medica ; (24): 3462-3471, 2023.
Article Dans Chinois | WPRIM | ID: wpr-981481

Résumé

The flavonoids in Panax notoginseng were qualitatively analyzed by ultra-high performance liquid chromatography-quadrupole-time of flight mass spectrometry(UPLC-Q-TOF-MS), and the content of three main flavonoids in P. notoginseng of different specifications and grades collected from different habitats was determined by HPLC-DAD. Flavonoids and anthocyanins were analyzed by UPLC-Q-TOF-MS/MS in the positive and negative ion modes, respectively. Twelve flavonoid glycosides and one anthocyanin glycoside in P. notoginseng were identified, but no flavonoid aglycones were detected. Among them, 12 compounds were identified in the underground part of P. notoginseng for the first time and eight compounds were first reported in this plant. Moreover, six and four compounds were identified in the Panax genus and the Araliaceae family for the first time, respectively. A method for simultaneous determination of three flavonoids in P. notoginseng was established by HPLC-DAD. The content of flavonoids in 721 P. notoginseng samples of 124 specifications and grades collected from 20 different habitats was simultaneously determined. Among three flavonoids determined, the content of quercetin-3-O-(2″-β-D-xylosyl)-β-D-galactoside was the highest with the average content in the tested samples of 161.0 μg·g~(-1). The content of compounds quercetin-3-O-hexosyl-hexoside and kaempferol-3-O-pentosyl-hexoside was relatively low, with the average content of 18.5 μg·g~(-1)(calculated as quercetin-3-O-sophoroside) and 49.4 μg·g~(-1)(calculated as kaempferol-3-O-sangbu diglycoside). There were significant differences in flavonoids content of samples from different production area. The content of flavonoids in spring P. notoginseng was significantly lower than that in winter P. notoginseng when the other influencing factors such as production areas, germplasm resources, and cultivation conditions were fixed. As for P. notoginseng of different specifications, the flavonoid content in the part connecting the taproot and the aboveground stem was significantly higher than that in other parts. The results of large-scale data showed that the flavonoid content gradually increased with the increase in the number of heads. There were significant differences between the flavonoid content in most specifications and grades, especially the 20-head P. notoginseng and countless head P. notoginseng, whose content was significantly lower and significantly higher than that of other specifications and grades, respectively. This study provides a scientific basis for the study of the effective components and quality control of P. notoginseng from the perspective of flavonoids.


Sujets)
Flavonoïdes/analyse , Anthocyanes/analyse , Quercétine , Chromatographie en phase liquide à haute performance/méthodes , Kaempférols , Spectrométrie de masse en tandem/méthodes , Hétérosides
12.
China Journal of Chinese Materia Medica ; (24): 2059-2067, 2023.
Article Dans Chinois | WPRIM | ID: wpr-981337

Résumé

Panax notoginseng contains triterpene saponins, flavonoids, amino acids, polysaccharides, volatile oil and other active components, which have the effects of promoting blood circulation, stopping bleeding, removing blood stasis, etc. This study summarized the herbal research, chemical constituents and main pharmacological activities of P. notoginseng, and based on the theory of Q-markers of traditional Chinese medicine, predicted and analyzed the Q-markers of P. notoginseng from the aspects of plant kinship, efficacy, drug properties, measurability of chemical components, etc. It was found that ginsenosides Rg_1, Re, and Rb_1 with specific content ratio, ginsenosides Rb_2, Rb_3, Rc, Rd, Rh_2, and Rg_3, notoginseng R_1, dencichine and quercetin could be used as potential Q-markers of P. notoginseng, which facilitated the formulation of quality standards reflecting the efficacy of P. notoginseng.


Sujets)
Panax notoginseng/composition chimique , Ginsénosides/analyse , Saponines/analyse , Médecine traditionnelle chinoise , Médicaments issus de plantes chinoises/pharmacologie , Panax/composition chimique
13.
Acta Pharmaceutica Sinica ; (12): 3428-3438, 2023.
Article Dans Chinois | WPRIM | ID: wpr-999073

Résumé

The AP2/ERF gene family is one of the largest transcription factor families in the plant kingdom, and plays an important role in response to biological and abiotic stresses, plant hormone responses, and plant growth and development. In this study, the AP2/ERF family of Panax notoginseng was identified by bioinformatics methods, and the physicochemical properties, structure, phylogenetic relationship, expression pattern and function of PnDREB4 gene of the family were analyzed. The results showed that 140 AP2/ERF family members were identified in P. notoginseng, which were divided into DREB, ERF, AP2, RAV and Sololit subgroups. The physicochemical properties and motifs of proteins were similar among the subgroups. There were 34 differentially expressed genes in the AP2/ERF family of Fusarium oxysporum infected P. notoginseng plants, and 19 genes were up-regulated. The expression level of PnDREB84 was up-regulated with the extension of Fusarium oxysporum infection time in the range of 0-96 h. The content of ABA and SA in P. notoginseng plants overexpressing PnDREB84 gene increased after 4 ℃ stress. The results showed that PnDREB84 gene plays a dual regulatory role in the process of biological stress and abiotic stress. PnDREB84 gene can be used as a potential molecular marker for the breeding of new varieties of P. notoginseng. The identification of AP2/ERF transcription factor and function analysis of PnDREB84 gene of P. notoginseng provided data support for the analysis of stress resistance mechanism of P. notoginseng and the breeding of new varieties.

14.
China Pharmacy ; (12): 2240-2244, 2022.
Article Dans Chinois | WPRIM | ID: wpr-943065

Résumé

OBJECTIVE To establish a method for simultaneous determination of 5 saponins in Huoxue zhitong capsules/ tablets and to confirm the illegal addition of Panax ginseng ,Panax quiquefolium and stems and leaves of Panax notoginseng . METHODS Ultra-high performance liquid chromatography tandem mass spectrometry was used . The Agilent RRHD Eclipse Plus C18 column was used with mobile phase of water (containing 0.1% formic acid )-acetonitrile for gradient elution at a flow rate of 0.35 mL/min. The column temperature was 35 ℃andthesamplesizewas 2 μL. Using electrospray ionization source ,negative ion scanning was carried out in multi -reaction monitoring mode . RESULTS The linear ranges of notoginsenoside R 1,ginsenoside Rb 1, ginsenoside Rg 1,ginsenoside Rd ,ginsenoside Re ,ginsenoside Rf (an unique ingredient of P. ginseng),ginsenoside Rb (3 an unique ingredient of stems and leaves of P. notoginseng)and pseudo -ginsenoside F 11(an unique ingredient of P. quiquefolium)were 9.99- 1 499.50,9.99-1 499.50,10.01-1 500.80,9.99-1 499.10,10.00-1 500.20,9.99-1 499.50,10.01-1 500.80,9.99-1 499.00 ng/mL (R2>0.997);the detection limits and the quantitative limits were not higher than 2.64 and 8.06 ng/mL,respectively. RSDs of precision,repeatability and stability (24 h)tests were all less than 6%. The average recoveries of saponins in capsules and tablets were 98.72%-102.40% and 95.18%-106.47%,respectively(all RSDs <5%,n=6). In 18 batches of Huoxue zhitong capsules ,the contents of ginsenoside Re ,ginsenoside Rd ,ginsenoside Rg 1,notoginsenoside R 1 and ginsenoside Rb 1 were 291.79-426.89,427.71- 677.49,2 294.28-3 371.43,571.22-848.19 and 1 841.33-2 959.12 μg/g,respectively;the contents of ginsenoside Rb 3 were no more than 45.02 μg/g. In 22 batches of Huoxue zhitong tablets,the contents of above indicators of P. notoginseng were 44.11-393.83,80.48-549.55,393.36-3 548.57,79.83- 872.60,and 288.64-2 912.66 μg/g,respectively;the contents of ginsenoside Rb 3 were no more than 44.79 μg/g. Ginsenoside Rf and pseudo -ginsenoside F 11 were not detected in the two preparations. CONCLUSIONS The method can be used to determine the contents of saponins in Huoxue zhitong preparations . No illegal addition of P. ginseng and P. quiquefolium are found in 40 batches of preparations ,but the input of P. notoginseng in some batches of tablet samples is less .

15.
Chinese Journal of Gastroenterology ; (12): 135-143, 2022.
Article Dans Chinois | WPRIM | ID: wpr-1016118

Résumé

Background: Dysregulation of intestinal flora is a key risk factor for colorectal cancer (CRC). In recent years, traditional Chinese medicine preparations and probiotics have been increasingly applied in the prevention of CRC. Aims: To investigate the preventive effect of Panax notoginseng saponins (PNS) combined with Bacillus subtilis on CRC. Methods: Thirty female BALB/c mice were randomly divided into normal control group (NC group), model group, PNS group, Bacillus subtilis group and PNS combined with Bacillus subtilis group (PaB group). CRC mice model was constructed by azoxymethane (AOM)/dextran sulfate sodium (DSS) method. During the experiment, the mice were weighed, and disease activity index (DAI) score was evaluated. The length of colorectum and tumor number were measured. Serum interleukin (IL) - 6 and IL - 10 contents were determined by ELISA. 16S rRNA sequencing was used to analyze the composition of intestinal flora. Results: Compared with model group, DAI score was significantly decreased (P<0.001), colorectal length was significantly increased (P<0.001), number of tumor was significantly decreased (P<0.001), tumor volume was significantly decreased (P<0.01), serum IL-6 content was significantly decreased (P<0.000 1), and serum IL-10 content was significantly increased in PaB group (P<0.000 1). The results of intestinal flora sequencing showed that Simpson index was significantly decreased in PaB group than in model group (P<0.05), Shannon index and Chao index were significantly increased (P<0.05), abundance of Bacteroidota was significantly increased (P<0.01), abundances of Firmicutes, Helicobacter and Oscillibacter were significantly decreased (P all <0.05), abundance of Lactococcus was significantly increased (P<0.05). Conclusions: The combination of PNS and Bacillus subtilis can effectively alleviate the occurrence of CRC caused by AOM/DSS, and its mechanism may be related to the improvement of composition of intestinal microbial community.

16.
Chinese Pharmacological Bulletin ; (12): 1052-1058, 2022.
Article Dans Chinois | WPRIM | ID: wpr-1014062

Résumé

Aim To explore the effects of Panax notog- inseng saponins( PNS) on hematopoietic functions anrl regulation on the TLR4/TLR2-NF-kB signaling path¬way in immune-mediated aplastic anemia ( AA ) C57 mice.Methods C57BL/6 mice were randomly divid¬ed into control group, total body irradiation group ( TBI) , model group, cyclosporine treatment group, PNS low-dose group, medium-dose group and high-dose group.The immune-mediated A A mice model was es¬tablished by total body irradiation with 5.0 Gy X-ray and mixed lymphocyte infusion.The body weight was measured, the spleen and thymus index was calculated , bone marrow pathology, the levels of peripheral blood triline cells,bone marrow nucleated cells( BMCs) and the levels of serum TNF-cx , 1L-2 , 1L-10 were detected, and the expression of CD1 lc and proteins related to the TLR4/TLR2-N F- k B pathway were detected 15 days later.Results Compared with control group, body weight, thymus index, the number of peripheral blood triline cells, BMCs and serum 1L-10 levels of the mice in model group significantly decreased ( P < 0.05 ) , while spleen index, the serum TNF-a, IL-2 levels and the protein expression of CD 11 c, TLR4, TLR2 , MvD88 , Akt and NF-kB in hone marrow significantly increased ( P <0.05).Compared with model group, after PNS treatment, hodv weight, thymus index, the number of peripheral blood triline cells, BMCs and serum IL-10 levels increased.Spleen index,serum TNF-cx,lL-2 lev¬els and the expression of CD11 c, TLR4, TLR2, NF-kB and Akt in bone marrow decreased, and the therapeutic effect was not dose-dependent.There was no signifi¬cant change in the expression of MvD88 and MAPK proteins.Conclusions PNS can improve AA bone marrow injury, regulate immune disoders and promote hematopoiesis, which may be related to the regulation of the number of DCs and the TLH4/TLH2 - Akt- NF-kB pathway in bone marrow.

17.
Acta Pharmaceutica Sinica ; (12): 3587-3595, 2022.
Article Dans Chinois | WPRIM | ID: wpr-964313

Résumé

Acute lung injury (ALI) is a kind of lung disease mainly caused by excessive inflammatory reaction. At present, there is a lack of effective therapeutic drugs in clinic. The aim of this study was to investigate the improvement effect of Panax notoginseng saponins (PNS) on ALI and its potential mechanism. The model of wild-type C57BL/6J mice was established by intratracheal instillation of 50 μL 25 mg·mL-1 lipopolysaccharide (LPS). 24 h later, 200 and 400 mg·kg-1 PNS was given intragastric, respectively. 24 h after administration, the improvement effect of PNS on ALI mice was evaluated by lung function, wet-to-dry weight ratio (W/D), total protein, interleukin 6 (IL6) and tumor necrosis factor α (TNFα) concentration of bronchoalveolar lavage fluid (BALF), expression levels of IL6 and TNFα in lung tissues, pathological changes of lung tissues and expression of inflammatory cells in BALF. The protein expression levels of NF-κB and its upstream kinases in Raw264.7 cells and ALI mice lung tissues were further detected to evaluate the potential mechanism of PNS improving ALI mice. The experimental scheme was approved by the Animal Experiment Ethics Committee of Shanghai University of Traditional Chinese Medicine. It was found that 400 mg·kg-1 PNS could significantly improve the lung function of ALI mice, reduce the contents of W/D, BALF total protein, IL6 and TNFα, neutrophils expression in BALF and the infiltration of inflammatory cells in lung tissue. In Raw264.7 cells and ALI mice lung tissue, PNS significantly reduced the expression of NF-κB, reduced the protein expression and phosphorylation of NF-κB, promoted the expression of IκBα, and inhibited the inflammatory response. This study showed that PNS can improve ALI by inhibiting the activity of NF-κB, inhibiting the release of inflammatory factors and inflammatory cells infiltration, alleviating lung inflammation.

18.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 86-91, 2022.
Article Dans Chinois | WPRIM | ID: wpr-942332

Résumé

ObjectiveTo investigate the role and mechanism of Panax notoginseng saponins (PNS) in inhibiting transforming growth factor-β1 (TGF-β1)-induced renal tubular epithelial cell injury. MethodNRK-52E renal tubular epithelial cells were cultured and divided into control group, TGF-β1 group,TGF-β1+12.5 mg·L-1 PNS group,TGF-β1+25 mg·L-1 PNS group and TGF-β1+50 mg·L-1 PNS group. After 48 hours of PNS intervention, the cells and the supernatant were collected, and cell morphology was observed by inverted microscope. Western blot was used to detect the expression of epithelial-mesenchymal transition (EMT)-related proteins and autophagy-related proteins. Flow liquid chromatography for multiple protein quantification and flow cytometry were employed to determine the content of inflammatory factors and apoptosis rate, respectively. ResultCompared with the conditions in the control group, after TGF-β1 induction, the cells showed a spindle-shaped change and the expression of E-cadherin was down-regulated (P<0.05), while the expression of α-smooth muscle actin (α-SMA) was up-regulated (P<0.05). After PNS treatment, most of the cells tended to be normal and reversed the occurrence of EMT. In addition, compared with the conditions in the control group, the level of TNF-α was increased while that of IL-10 was decreased, with elevated apoptosis rate (P<0.05) in the TGF-β1 group. After PNS treatment, the level of TNF-α was lowered while that of IL-10 was boosted with the increase of the dose, with reduced apoptosis rate (P<0.05). Moreover, after TGF-β1 induction, the expression of autophagy-related proteins Beclin 1 and LC3Ⅱ/Ⅰ in renal tubular epithelial cells were up-regulated, while PNS inhibited their expression(P<0.05,P<0.01). ConclusionPNS had a protective effect on TGF-β1-induced renal tubular epithelial cells, and the mechanism might be that it reduced inflammation and apoptosis by inhibiting autophagy, thus alleviating TGF-β1-induced injury.

19.
Acta Pharmaceutica Sinica ; (12): 1506-1515, 2022.
Article Dans Chinois | WPRIM | ID: wpr-924748

Résumé

MYB transcription factors, one of the largest transcription factor families in plants, play an important role in signal transduction, plant growth and plant resistance. In this study a full-length cDNA of the PnMYB1R1 gene was cloned from Panax notoginseng. Sequence analysis, prokaryotic expression and purification, subcellular location, transcriptional activity analysis, tissue-specific analysis and expression analysis under different abiotic stresses was performed. The open reading frame (ORF) of PnMYB1R gene was 738 bp, encoding a protein of 245 amino acids with a predicted molecular mass (MW) of 27.0 kD. The sequence analysis and polygenetic analysis indicated that the PnMYB1R1 protein contains a conserved R3 domain, belonging to TRF-like protein in 1R-MYB-type transcription factors. The recombinant PnMYB1R1 protein was expressed in Escherichia coli BL21(DE3) cells using the prokaryotic expression vector pET28a-PnMYB1R1 and was purified. Subcellular localization analysis showed that PnMYB1R1 was localized in the nucleus. Transcriptional activity analysis indicated that the PnMYB1R1 transcription factor has transcriptional activation activity. Expression analysis indicated that PnMYB1R1 was primarily expressed in roots, followed by stems and leaves, and then rootlets. The expression level of PnMYB1R1 in root, stems, leaves and rootlets was influenced by salt, low temperature and drought treatment, while the abundance of PnMYB1R1 was significantly induced by salt stress in these tissues. These results provide valuable insights into the role of 1R-MYB transcription factors in plant defense.

20.
Chinese Journal of Natural Medicines (English Ed.) ; (6): 258-269, 2022.
Article Dans Anglais | WPRIM | ID: wpr-929258

Résumé

Colorectal cancer (CRC) is the third most lethal cancer and leading cause of cancer mortality worldwide. A key driver of CRC development is colon inflammatory responses especially in patients with inflammatory bowl disease (IBD). It has been proved that Panax notoginseng saponins (PNS) have anti-inflammatory, anti-oxidant and anti-tumor effects. The chemopreventive and immunomodulatory functions of PNS on colitis-associated colorectal cancer (CAC) have not been evaluated.This present study was designed to study the potential protective effects of PNS on AOM/DSS-induced CAC mice to explore the possible mechanism of PNS against CAC. Our study showed that PNS significantly alleviated colitis severity and prevented the occurrence of CAC. Functional assays revealed that PNS relieved immunosuppression of Treg cells in the CAC microenvironment by inhibiting the expression of IDO1 mediated directly by signal transducer and activator of transcription 1 (STAT1) rather than phosphorylated STAT1. Ultimately, Rh1, one of the PNS metabolites, exhibited the best inhibitory effect on IDO1 enzyme activity. Our study showed that PNS exerted significant chemopreventive function and immunomodulatory properties on CAC. It could reduce macrophages accumulation and Treg cells differentiation to reshape the immune microenvironment of CAC. These findings provided a promising approach for CAC intervention.


Sujets)
Animaux , Humains , Souris , Colite/traitement médicamenteux , Néoplasmes associés aux colites/traitement médicamenteux , Macrophages , Panax notoginseng , Saponines/usage thérapeutique , Microenvironnement tumoral
SÉLECTION CITATIONS
Détails de la recherche