Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 2 de 2
Filtre
Ajouter des filtres








Gamme d'année
1.
Korean Journal of Nuclear Medicine ; : 153-163, 2019.
Article Dans Anglais | WPRIM | ID: wpr-786477

Résumé

Brain connectivity can now be studied with topological analysis using persistent homology. It overcame the arbitrariness of thresholding to make binary graphs for comparison between disease and normal control groups. Resting-state fMRI can yield personal interregional brain connectivity based on perfusion signal on MRI on individual subject bases and FDG PET produces the topography of glucose metabolism. Assuming metabolism perfusion coupling and disregarding the slight difference of representing time of metabolism (before image acquisition) and representing time of perfusion (during image acquisition), topography of brain metabolism on FDG PET and topologically analyzed brain connectivity on resting-state fMRI might be related to yield personal connectomics of individual subjects and even individual patients. The work of association of FDG PET/resting-state fMRI is yet to be warranted; however, the statistics behind the group comparison of connectivity on FDG PET or resting-state MRI was already developed. Before going further into the connectomics construction using directed weighted brain graphs of FDG PET or resting-state fMRI, I detailed in this review the plausibility of using hybrid PET/MRI to enable the interpretation of personal connectomics which can lead to the clinical use of brain connectivity in the near future.


Sujets)
Humains , Encéphale , Classification , Connectome , Glucose , Imagerie par résonance magnétique , Métabolisme , Perfusion
2.
Journal of Movement Disorders ; : 13-23, 2018.
Article Dans Anglais | WPRIM | ID: wpr-765814

Résumé

OBJECTIVE: Parkinson’s disease (PD) is a neurodegenerative disorder that mainly leads to the impairment of patients’ motor function, as well as of cognition, as it progresses. This study tried to investigate the impact of PD on the resting state functional connectivity of the default mode network (DMN), as well as of the entire brain. METHODS: Sixty patients with PD were included and compared to 60 matched normal control (NC) subjects. For the local connectivity analysis, the resting state fMRI data were analyzed by seed-based correlation analyses, and then a novel persistent homology analysis was implemented to examine the connectivity from a global perspective. RESULTS: The functional connectivity of the DMN was decreased in the PD group compared to the NC, with a stronger difference in the medial prefrontal cortex. Moreover, the results of the persistent homology analysis indicated that the PD group had a more locally connected and less globally connected network compared to the NC. CONCLUSION: Our findings suggest that the DMN is altered in PD, and persistent homology analysis, as a useful measure of the topological characteristics of the networks from a broader perspective, was able to identify changes in the large-scale functional organization of the patients’ brain.


Sujets)
Humains , Encéphale , Cognition , Imagerie par résonance magnétique , Maladies neurodégénératives , Maladie de Parkinson , Cortex préfrontal
SÉLECTION CITATIONS
Détails de la recherche