Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 1 de 1
Filtre
Ajouter des filtres








Gamme d'année
1.
Biol. Res ; 44(4): 311-321, 2011. ilus, tab
Article Dans Anglais | LILACS | ID: lil-626729

Résumé

The origin of axoplasmic proteins is central for the biology of axons. For over fifty years axons have been considered unable to synthesize proteins and that cell bodies supply them with proteins by a slow transport mechanism. To allow for prolonged transport times, proteins were assumed to be stable, i.e., not degraded in axons. These are now textbook notions that configure the slow transport model (STM). The aim of this article is to cast doubts on the validity of STM, as a step toward gaining more understanding about the supply of axoplasmic proteins. First, the stability of axonal proteins claimed by STM has been disproved by experimental evidence. Moreover, the evidence for protein synthesis in axons indicates that the repertoire is extensive and the amount sizeable, which disproves the notion that axons are unable to synthesize proteins and that cell bodies supply most axonal proteins. In turn, axoplasmic protein synthesis gives rise to the metabolic model (MM). We point out a few inconsistencies in STM that MM redresses. Although both models address the supply of proteins to axons, so far they have had no crosstalk. Since proteins underlie every conceivable cellular function, it is necessary to re-evaluate in-depth the origin of axonal proteins. We hope this will shape a novel understanding of the biology of axons, with impact on development and maintenance of axons, nerve repair, axonopathies and plasticity, to mention a few fields.


Sujets)
Animaux , Souris , Transport axonal/physiologie , Protéines de tissu nerveux/biosynthèse , Modèles neurologiques , Protéines de tissu nerveux/physiologie , Cellules de Schwann/physiologie
SÉLECTION CITATIONS
Détails de la recherche