Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 47
Filtre
1.
Article | IMSEAR | ID: sea-217167

Résumé

Microorganisms in close association with the roots of plants can enhance plant growth, through nitrogen fixation (NF) and phosphorus solubilization (PS). Although the type of microbes in close association with different plants varies, their population and genetic capabilities is affected by several factors. Therefore, in this study, the plant growth promoting properties of rhizobacteria present in the rhizosphere of two cassava varieties (Sweet cassava US, bitter cassava ST) indigenous to Iyamho community was explored. The samples were analyzed for total culturable heterotrophic bacteria community and the obtained isolates were screened for NF and PS abilities using a semi-solid N-free medium and Pikovaskya agar respectively. The bacterial population in both agar medium varied, however, the bacterial counts on Luria Bertani (3.67 x 105, 3.35 x 106) was higher than Nutrient agar (2.73 x 105, 2.68 x 105) after incubation for 24 hours at 37oC for sweet and bitter cassava rhizosp here respectively. Also, isolates from sweet cassava had the highest bacteria count in both Nutrient agar and Luria Bertani agar. A total of sixteen isolates were obtained, six phosphate solubilizers, five nitrogen fixers, and five without traits for either NF or PS. The Gram-negative bacterial group was more dominant across all isolates while the dominant genus was Bacillus. This study indicates that the nitrogen fixers and phosphate solubilizers are major constituents of the rhizomicrobe of cassava plants although the distribution varies across cassava varieties. However, sweet cassava rhizosphere harbored more nitrogen-fixing bacteria while both varieties had the same amount of phosphate solubilizing rhizobacteria.

2.
Biosci. j. (Online) ; 38: e38091, Jan.-Dec. 2022. ilus, tab
Article Dans Anglais | LILACS | ID: biblio-1415741

Résumé

Currently, southern Minas Gerais (MG) state is an important producer of different olive tree (Olea europaea L.) cultivars because, in this region, the plants can differentiate the buds to produce flowers and fruit. To stimulate the rooting of cuttings, the synthetic hormone indole-3-butyric acid (IBA) at a concentration of 3 g L−1 is used commercially. However, few studies have investigated arbuscular mycorrhizal fungi (AMF), isolated or combined with rhizobacteria, as a biotechnological tool to produce hormones that function in the rooting of olive tree cuttings. The aim of this study was to evaluate the capacity of different AMF species (Rhizophagus clarus, Gigaspora rosea, or Acaulospora scrobiculata), combined or not with IBA or rhizobacteria, to promote the rooting of three olive tree cuttings (Arbequina, Grappolo 541, and Maria da Fé) with potential for cultivation in this region. For this, three experiments were conducted at the Experimental Farm of EPAMIG in Maria da Fé (MG), and the rooting potential of the olive tree cuttings inoculated with I) AMF, II) AMF combined with increasing doses of IBA, and III) AMF combined with three isolates of rhizobacteria was evaluated. The inoculation of olive tree cuttings of cultivars Arbequina, Grappolo 541, and Maria da Fé with Rhizophagus clarus, Gigaspora rosea, or Acaulospora scrobiculata combined or not with IBA or rhizobacteria did not significantly promote rooting. Alternative forms of rooting olive tree cuttings are still a challenge, and further studies for standardizing methodologies and experimental conditions are required.


Sujets)
Racines de plante , Mycorhizes , Olea
3.
Chinese Journal of Biotechnology ; (12): 1915-1928, 2022.
Article Dans Chinois | WPRIM | ID: wpr-927827

Résumé

In this study, the effects of two plant growth-promoting bacteria Klebsiella michiganensis TS8 and Lelliottia Jeotgali MR2 on the growth and cadmium (Cd) uptake of Arabidopsis thaliana under Cd stress were explored. A wild-type Arabidopsis thaliana was selected as the experimental plant and was planted at different Cd concentrations. MR2 and TS8 bacterial suspensions were sprayed onto the rhizospheric soil during the planting process. The initial Cd concentration of the bought soil was 14.17 mg/kg, which was used as the pot soil of the low-concentration Cd treatment group (LC). The concentration of soil Cd at high-concentration Cd treatment group (HC) were 200 mg/kg higher than that at LC group. Compared with the control group, MR2 suspension significantly promoted the growth of A. thaliana at both low and high concentrations, while TS8 strain and MR2_TS8 mixture only exhibited growth-promoting effect at high concentration. However, it was noteworthy that, TS8 suspension significantly reduced the Cd content in the underground parts of A. thaliana (60% and 59%), and significantly improved the Cd content in the aboveground parts of A. thaliana (234% and 35%) at both low and high concentrations. In addition, at low concentration, both single strain and mixed strains significantly improved the transformation from reducible Cd to acid-extractable Cd in soil, promoted Cd intake, and thereby reduced the total Cd content in soil. Therefore, the rational application of plant growth-promoting bacteria may improve crop yield and remediate Cd contamination in soil.


Sujets)
Arabidopsis , Bactéries , Dépollution biologique de l'environnement , Cadmium/pharmacologie , Enterobacteriaceae , Klebsiella , Racines de plante/composition chimique , Sol , Polluants du sol
4.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 166-174, 2022.
Article Dans Chinois | WPRIM | ID: wpr-940600

Résumé

ObjectiveTo study the effects of different plant growth-promoting rhizobacteria (PGPR) on the growth of Paris polyphylla var. yunnanensis seedlings and the quality of its medicinal parts, in order to provide reference for the cultivation of high-quality P. polyphylla var. yunnanensis. MethodThe pot culture experiment at room temperature and the single-factor completely random design were employed for exploring the effects of five PGPR on physiological characteristics and inorganic elements of P. polyphylla var. yunnanensis. ResultThe results showed that the exogenous inoculation of different PGPR promoted the growth and development of P. polyphylla var. yunnanensis to varying degrees, delayed the senescence of leaves, and improved the medicinal value of new and old rhizomes. Compared with the non-inoculated control, the exogenous inoculation of compound microbial fertilizer (FH) and microbial agent Sanju Guanjin liquid (SJ) enhanced the root vigor, increased the content of photosynthetic pigments and the activities of anti-oxidant enzymes [superoxide dismutase (SOD), catalase (CAT), and peroxidase (POD)], and reduced the content of malondialdehyde (MDA) in leaves. Their inhibition rates against MDA were 10.46%-39.62% and 20.99%-53.12%, respectively. With the growth of P. polyphylla var. yunnanensis, the inhibition rate against MDA gradually increased, which effectively delayed the senescence of P. polyphylla var. yunnanensis leaves. In addition, the exogenous inoculation of different PGPR promoted the accumulation of nutrient elements in new and old rhizomes, lowered the heavy metal content to varying degrees, and improved the medicinal value of P. polyphylla var. yunnanensis rhizomes. ConclusionFH and SJ have exhibited the best promoting effect on the growth of P. polyphylla var. yunnanensis seedlings and also the best regulatory effect on the medicinal value of P. polyphylla var. yunnanensis rhizomes, which has provided reference for the application and promotion of PGPR in the growth of P. polyphylla var. yunnanensis.

5.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 131-138, 2022.
Article Dans Chinois | WPRIM | ID: wpr-940396

Résumé

ObjectiveTo study the effects of foliar spraying of two kinds of compound rhizosphere growth-promoting agents on the growth and physiological characteristics of Angelicae Sinensis Radix (ASR), as well as the pharmacodynamic components, in order to lay a foundation for providing functional microbial agents for ecological cultivation of ASR. MethodThe compound growth-promoting agents T1 (Pseudomonas CBS5, CBS7 and CBSB) and T2 (Bacillus 5C1, 5C5 and 5C7) with the concentration of 1×108 CFU·mL-1 were sprayed on the leaf surface of the field, and the sterile potato glucose broth medium was used as the control (CK). The plant growth indexes of ASR were measured by conventional methods, the photosynthetic physiological indexes of ASR were measured by portable photosynthetic measurement system, the enzyme activities of plants and microorganisms were measured by kit method, and the endogenous hormone levels were analyzed by ultra-performance liquid chromatography tandem mass spectrometry. The contents of ferulic acid, senkyunolide I, coniferyl ferulate, senkyunolide A and Z-ligustilide were determined by high performance liquid chromatography. ResultCompared with CK, the two compound inoculants could promote the growth of ASR and increase the biomass, increase the leaf net photosynthetic rate, stomatal conductance, intercellular CO2 concentration, transpiration rate, increase catalase, peroxidase, superoxide dismutase, polyamine oxidase, diamine oxidase and polyphenol oxidase enzyme activities, increase endogenous jasmonic acid, cytokinin and gibberellin levels in plants, increase the contents of ferulic acid, senkyunolide A and Z-ligustilide, reduce the contents of malondialdehyde and abscisic acid, and reduce the incidence of root rot. ConclusionFoliar spraying of two kinds of rhizosphere compound growth-promoting agents can promote the growth, photosynthesis and stress resistance of ASR, and can improve the quality of ASR in different degrees. Comprehensive analysis shows that T1 treatment is better than T2 treatment in the growth-promoting and quality-enhancing of ASR.

6.
China Journal of Chinese Materia Medica ; (24): 5247-5252, 2021.
Article Dans Chinois | WPRIM | ID: wpr-921669

Résumé

In this study, the rhizobacteria and actinomycetes of Polygonum multiflorum were screened for the strains with indole acetic acid(IAA)-producing capacity by Salkowski method, the siderophore-producing strains by Chrome Azurol S(CAS) assay, and the strains with inorganic phosphorus-solubilizing capacity by PKO inorganic phosphorus medium. The strains were identified by morphological identification, physiological and biochemical characteristics, and 16 S rDNA sequences. Furthermore, the effect of growth-promoting strains on the seed germination and development of P. multiflorum was tested. The results showed that among 196 strains, two strains F17 and F42 were found to be capable of producing IAA and siderophore and solubilizing inorganic phosphorus simulta-neously. For F17 and F42, the results are listed below: 38.65 and 33.64 mg·L~(-1) for IAA production, 0.85 and 0.49 for siderophore-producing capacities(A_s/A_r), and 1.35 and 1.70 for inorganic phosphorus-solubilizing capacities(D/d), respectively. Comprehensive analysis revealed that strains F17 and F42 were identified as Pseudochrobactrum asacharolyticum and Bacillus aryabhattai, respectively, and both could significantly promote the seed germination of P. multiflorum.


Sujets)
Bacillus , Fallopia multiflora , Germination , Graines , Microbiologie du sol
7.
Article | IMSEAR | ID: sea-209918

Résumé

Plant growth-promoting rhizobacteria (PGPR) with multiple beneficial traits serve as potentially, ecofriendly,and cost-effective alternatives to chemical fertilizers and pesticides. They have both direct and indirectaffirmative impacts on overall plant growth and health. PGPRs are well known to directly improve the plantgrowth by phytohormone production and availability of minerals in soil. A total of nine soil samples were takenfrom near the rhizospheric zone of different crops and 56 rhizobacterial strains were isolated. Only 16 out of56 rhizobacterial strains were found positive for more than one beneficial trait that included solubilization ofphosphate, indole acetic acid (IAA), siderophore, ammonia and H2S production. Among all PGPR strains,RKM15 was observed having the highest phosphate solubilizing index (3.4), solubilized phosphorus (339mg L−1) and also siderophore unit (70.54 %). The maximum IAA production was observed by RKM25 strain(35.56 µg ml−1). The most promising RKM15 isolate was identified as Pantoea dispersa (MN629239) through16S rRNA gene sequencing technique. This characterized PGPR strain may be used for the development ofbiofertilizers to enhance crop productivity and improvement in soil fertility

8.
Rev. colomb. biotecnol ; 22(1): 79-86, ene.-jun. 2020. graf
Article Dans Espagnol | LILACS-Express | LILACS | ID: biblio-1115574

Résumé

RESUMEN La batata (Ipomoea batatas L.) se cultiva en todo el mundo como fuente de carbohidratos, y su producción comercial requiere un alto aporte de fertilizantes químicos, lo cual eleva los costos de producción. Los inoculantes microbianos, se emplean como una fuente alternativa de nutrición vegetal. El objetivo de esta investigación fue evaluar el efecto de Pseudomonas denitrificans IBVS2 y Azotobacter vinelandii IBVS13 con diferentes niveles fertilización química nitrogenada en el cultivo de batata en la microrregión del Valle del Sinú en el Caribe Colombiano. Para los montajes de los experimentos se utilizó un diseño completamente aleatorizado, ocho tratamientos y tres repeticiones usando como material vegetal plántulas obtenidas in vitro endurecidas en invernadero. Los resultados demostraron que la cepa Azotobacter vinelandii IBVS13 con un 75% de fertilización nitrogenada (FN) mejoró la capacidad de acumulación de materia seca en los tubérculos de batata, generando incrementos de 6,65 t/ha respecto al testigo químico y 3,18 t/ha en relación con el testigo absoluto, garantizando un incremento del rendimiento. Así mismo, el contenido de proteína bruta aumentó 13,93% al realizar la inoculación de las plantas con esta cepa. En el mismo sentido, la cepa Pseudomonas denitrificans IBVS2+ fertilización nitrogenada 50% presentó aumentos en la variable de fibra cruda 31,75% respecto al testigo absoluto, contribuyendo de manera eficaz como bioestimulante microbiano en la agricultura.


ABSTRACT Sweet potatoes (Ipomoea batatas L.) are grown worldwide as a source of carbohydrates, and their commercial production requires a high contribution of chemical fertilizers, which increases production costs. Microbial inoculants are used as an alternative source of plant nutrition. The objective of this research was to evaluate the effect of Pseudomonas denitrificans IBVS2 and Azotobacter vinelandii IBVS13 with different levels of nitrogen chemical fertilization in the sweet potato crop in the microregion of the Sinú Valley in the Colombian Caribbean. A completely randomized design was used for the experiment development, eight treatments was evaluated and three repetitions were carried out. In vitro hardened seedlings was used as a plant material. The results showed that the Azotobacter vinelandii IBVS1 3 strain with 75% nitrogen fertilization (FM) improved the accumulation capacity of dry matter in sweet potato roots, generating increases of 6.65 t / ha compared to the chemical control and 3.18 t / ha in relation to the absolute control, guaranteeing an increase in yield. The crude protein content was increased in 13.93% when inoculating the plants with this strain. In the same way, with the inoculation of strain Pseudomonas denitrificans IBVS2 + 50% nitrogen fertilization the crude fiber variable was increased in 31.75% compared to the absolute control, contributing effectively as a microbial biostimulant in agriculture.

9.
J Environ Biol ; 2019 Mar; 40(2): 235-239
Article | IMSEAR | ID: sea-214586

Résumé

Aim: New species of Plant Growth Promoting Rhizobacteria (PGPR), with varying growth promoting and biocontrol ability are often being discovered. They facilitate plant growth either directly by secreting nutrients and hormones or indirectly by providing defence mechanism to the plant. The present study was undertaken to isolate PGPR from the rhizosphere of Solanum lycopersicum and Arachis hypogaea, and test their growth promoting ability and antifungal activity against Fusarium oxysporum. Methodology: PGPRs were isolated from the rhizosphere of S. lycopersicum and A. hypogaea by serial dilution of the rhizospheric soil and identified by 16s rDNA sequencing. The isolates were analysed for antifungal activity against F. oxysporum, indole 3-acetic acid (IAA) production and phosphate solubilisation. For the growth promotion assay, aseptically grown Vigna radiata seedlings were dipped separately in isolated bacterial suspension of PGPR (109 CFU ml-1) and planted in autoclaved soil. Plants were irrigated with 50% Hoagland solution for every 48 hr and maintained at 25 ± 2 °C with 16/8 hr of light and dark photoperiod. Growth promotion was examined in terms of differences in shoot length, root length, fresh weight and dry weight after 12 days of treatment. Results: Six isolates were found to have antifungal activity towards plant pathogen, F. oxysporum. Five isolates showed similarity to Pseudomonas aeruginosa (B7-1, B11-5, B3-1, Rh-1, Rh-2) and one to Pseudomonas putida (B53). All six strains were able to produce IAA, where B53 and B13-1 showed the highest production compared to other strains. P. putida B53 demonstrated the highest plant growth promotion activity by significantly (p<0.05) increasing the growth of V. radiata plants as evidenced by increase in shoot length, root length, fresh and dry weight. Interpretation: The results obtained from the present study supports that PGPRs like Pseudomonas sp. could serve as potential eco-friendly bio-fertilizer and bio- fungicide

10.
Article | IMSEAR | ID: sea-187925

Résumé

To reduce negative effects of drought on plants, the use of plant growth- promoting rhizobacteria (PGPR) is an effective way to investigate that. The aim of the present study was to assess the bacterial characteristics Bacillus subtilis, Bacillus cereus, Pseudomonas koreensis, Pseudomonas fluroscence, and Enterobacter cloacae as growth, IAA production, phosphate solubilization, seed germination under different concentrations of polyethylene glycol (PEG 6000), and their efficacy of single or dual inoculation with two superior strains in lyzimeter experiment for improving growth and yield of sensitive variety of wheat (Triticum aestivum L.) cv. Sids 1 under different stress irrigation water 100, 70 and 35% of field capacity. Among the tested strains only 2 strains B. subtilis and P. koreensis showed a stable growth even in the maximum 40% PEG concentration. Also, P. koreensis produced the highest amount of IAA (1.84 µg ml-1), and solubilise maximum amount of P (1.59 µg ml-1), and improved seed germination at 30% PEG concentration. On the other hand, in gnotobiotic sand system experiment, PGPR increase growth dynamics as well as proline content and root colonisation of wheat plants over uninoculated control under drought-stressed conditions. In lyzimeter experiment, single and dual inoculation treatments showed a significant increase of physiological and biochemical parameters of the plant under different drought stress treatments. Also, maximum increase 29.08 % in ascorbate peroxidase and 27.38% in catalase activities due to dual inoculation treatments T12 (Inoculation with B. subtilis + P. koreensis and irrigated at field capacity 35%), with respect to the corresponding unstressed control T10 (Inoculation with B. subtilis + P. koreensis and irrigated at field capacity 100%). Also, significant increase in grain yield, straw yield, biological yield and harvest index were observed under different drought stress. These results may be related to increase uptake of water and nutrients in wheat plant and reflected in better plant growth and yield.

11.
Rev. argent. microbiol ; 50(2): 178-188, jun. 2018. graf, tab
Article Dans Espagnol | LILACS | ID: biblio-977233

Résumé

Una alternativa para el manejo sustentable en el cultivo de Capsicum annuum L. se ha enfocado en el uso de bacterias promotoras del crecimiento vegetal (BPCV) y hongos micorrícicos arbusculares (HMA). Esta investigación seleccionó BPCV y HMA sobre la base de su efecto en plantas de chile Bell Pepper y jalapeño. Se utilizaron 5 cepas bacterianas aisladas de diferentes localidades del estado de México (P61 [Pseudomonas tolaasii], A46 [P. tolaasii], R44 [Bacillus pumilus], BSP1.1 [Paenibacillus sp.] y OLs-Sf5 [Pseudomonas sp.]) y 3 tratamientos con HMA (H1 [consorcio aislado de la rizosfera de chile en el estado de Puebla], H2 [Rhizophagus intraradices]y H3 [consorcio aislado de la rizosfera de limón del estado de Tabasco]). Además, se incluyó un tratamiento fertilizado (solución Steiner 25%) y un testigo absoluto. Plántulas de chile jalapeño «Caloro¼ y pimiento Bell Pepper «California Wonder¼ fueron inoculadas con HMA en el momento de la siembra y con BPCV 15 días después de emerger, y crecidas bajo condiciones de cámara de ambiente controlado. En chile jalapenño, la mejor cepa bacteriana fue P61 y el mejor tratamiento de HMA fue el H1; en Bell Pepper la mejor cepa fue R44 y los mejores HMA fueron el H3 y el H1. Estos microorganismos incrementaron el crecimiento de plántulas de chile jalapenño y Bell Pepper en comparación con el testigo sin fertilizar. Asimismo, P61 y R44 beneficiaron positivamente la capacidad fotosintética del PSII.


Plant growth promoting rhizobacteria (PGPR) and arbuscular mycorrhizal fungi (AMF) are a biological alternative for the sustainable management of Capsicum annuum L. This research work evaluated the effects of both PGPR and AMF on bell pepper and jalapeno pepper plants. Five bacterial strains isolated from several locations in Estado de Mexico were used: [P61 (Pseudomonas tolaasii), A46 (P. tolaasii), R44 (Bacillus pumilus), BSP1.1 (Paenibacillus sp.), and OLs-Sf5 (Pseudomonas sp.)], and three treatments with AMF [H1 (consortium isolated from pepper crops in the State of Puebla), H2 (Rhizophagus intraradices), and H3 (consortium isolated from the rhizosphere of lemon trees, State of Tabasco)]. In addition, a fertilized treatment (Steiner nutrient solution at 25%) and an unfertilized control were included. Seedlings of "Caloro" jalapeno pepper and "California Wonder" bell pepper were inoculated with AMF at seed sowing, and PGPR were inoculated after 15 days of seedling emergence; seedlings were grown under plant growth chamber conditions. P61 bacterium and H1 AMF consortia were the most effective microorganisms for jalapeno pepper whereas R44 bacterium and AMF H3 and H1 were the most effective for bell peppers, when compared to the unfertilized control. Furthermore, P61 and R44 bacteria showed beneficial effects on PSII efficiency.


Sujets)
Capsicum , Mycorhizes , Complexe protéique du photosystème II , Capsicum/physiologie , Capsicum/croissance et développement , Racines de plante , Plant , Complexe protéique du photosystème II/physiologie , Mexique
12.
Rev. peru. biol. (Impr.) ; 25(2): 161-168, Apr.-Jun. 2018. ilus, tab
Article Dans Espagnol | LILACS-Express | LILACS | ID: biblio-1094314

Résumé

Se produjo biomasa de Pseudomonas sp. LMTK32 a partir de la modificación del medio de cultivo Caldo Extracto de Levadura Manitol (LMC) con el objetivo de incrementar el número de células viables con capacidad de promover la germinación de semillas de maca peletizadas y reducir los costos de producción. En el proceso de optimización, los componentes extracto de levadura y manitol del medio de cultivo LMC fueron reemplazados por fuentes comerciales de sacarosa y glutamato, cuyas concentraciones fueron determinadas en matraces mediante el diseño estadístico de Box-Behnken; además, se determinó el efecto del porcentaje de inóculo en el tiempo de producción de biomasa. Posteriormente se determinó a nivel de biorreactor que 28.57 h-1 fue el valor adecuado del coeficiente volumétrico de transferencia de oxigeno (kLa) a 600 rpm, produciendo 1.28x1011 UFC/mL. En el medio modificado M1, empleando 12.06 g/L-1 de sacarosa, 11.50 g/L-1 de glutamato de sodio y 10.9% de inoculante se obtuvo 15x108 UFC/mL, superando en 52% más el número de células viables con respecto al tratamiento control LMC (7.8x108 UFC/mL). A nivel in vitro, la peletización de semillas de maca con Pseudomonas sp. LMTK32 producidas en biorreactor y en el medio modificado M1 favoreció su germinación. A partir de sustratos orgánicos comerciales se puede producir inoculantes bacterianos eficientes en el desarrollo de cultivos de maca, sin alterar su capacidad de promover el crecimiento vegetal


Biomass of Pseudomonas sp. LMTK32 was produced from modification of culture media Yeast Extract Mannitol Broth (YEMB) with the aim of increasing the number of viable cells with the ability to promote the germination of maca seeds pelleted with the bacteria and reduce production costs. In the optimization process, the yeast extract and mannitol components of the LMC culture media were replaced by commercial sources of sucrose and glutamate, whose concentrations were determined in flasks by statistical design from Box-Behnken; in addition, the effect of the inoculum percentage on the time of biomass production was determined. Subsequently, it was determined at the bioreactor level that 28.57 h-1 was the adequate value of the volumetric oxygen transfer coefficient (kLa) at 600 rpm, producing 1.28 x 10 11 CFU / mL. In the LMC M1 modified media, using 12.06 g / L-1 of sucrose, 11.50 g / L-1 of sodium glutamate and 10.9% of inoculant obtained 15x108 CFU / mL, increasing in 48% the number of viable cells with respect to the YEMB control treatment (7.8x10 8 CFU / mL). At the in vitro level, the pelleting of maca seeds with Pseudomonas sp. LMTK32 produced in bioreactor and in the modified media M1 favored its germination. From commercial organic substrates, efficient bacterial inoculants can be produced in the development of maca crops, without altering their ability to promote plant growth

13.
Braz. j. microbiol ; 49(1): 54-59, Jan.-Mar. 2018. tab
Article Dans Anglais | LILACS | ID: biblio-889195

Résumé

ABSTRACT Plant Growth Promoting Rhizobacteria (PGPR) have different mechanisms of action in the development of plants, such as growth promotion, production of phytohormones and antibiotic substances and changes in root exudates. These help to control plant diseases. In order to evaluate the potential of microorganisms in the control of Meloidogyne javanica and Ditylenchus spp., five rhizobacteria isolated from rhizosphere of garlic cultivated in the Curitibanos (SC) region were tested. Hatching chambers were set on Petri dishes, in which were added 10 mL of bacterial suspension and 1 mL of M. javanica eggs suspension, at the rate of 4500, on the filter paper of each chamber. The same procedure was performed with 300 juvenile Ditylenchus spp. The experimental design was completely randomized, with four replications. The evaluations were performed every 72 h for nine days. The antagonized population of nematodes was determined in Peters counting chamber, determining the percentage hatching (for M. javanica) and motility (for Ditylenchus spp). Isolates CBSAL02 and CBSAL05 significantly reduced the hatching of M. javanica eggs (74% and 54.77%, respectively) and the motility of Ditylenchus spp. (55.19% and 53.53%, respectively) in vitro. Isolates were identified as belonging to the genera Pseudomonas (CBSAL05) and Bacillus (CBSAL02).


Sujets)
Animaux , Bacillus/physiologie , Maladies des plantes/prévention et contrôle , Pseudomonas/physiologie , Tylenchoidea/microbiologie , Bacillus/génétique , Bacillus/isolement et purification , Lutte biologique contre les nuisibles , Maladies des plantes/parasitologie , Pseudomonas/génétique , Pseudomonas/isolement et purification , Tylenchoidea/physiologie
14.
Ciênc. rural (Online) ; 48(7): e20170712, 2018. tab
Article Dans Anglais | LILACS | ID: biblio-1045158

Résumé

ABSTRACT: The cotton plant (Gossypium hirsutum) is affected by several diseases of economic importance, among them root-knot nematode (Meloidogyne incognita races 3 and 4). Methods to control this disease include the application of nematicides, solarization, deep plowing, crop rotation and use of antagonistic microorganisms. Among species of Bacillus, there are strains that act as bioregulators and antagonists of several pathogens. Tests to identify these strains are hampered by the difficulty of obtaining large populations of the pathogen and by the time of execution of the in vivo tests that should be conducted for about 90 days. The objective of this research was to compare the toxicity of B. thuringiensis strains to two nematodes, M. incognita and Caenorhabditis elegans, evaluating the possibility of using C. elegans as an indicator for the selection of strains with biocontrol potential against M. incognita. Therefore, the toxicity of nine B. thuringiensis strains on C. elegans and M. incognita was evaluated under laboratory and greenhouse conditions. Most strains toxic to C. elegans in vitro were also toxic to M. incognita, and three of them (S906, S1192, S2036) significantly reduced the populations of the two nematodes. The toxic effect of B. thuringiensis strains on C. elegans was like that reported for the same bacterial isolates on M. incognita in vivo. These results suggested that it is plausible to use C. elegans as an indicator of toxicity for selection of B. thuringiensis strains toxic to M. incognita.


RESUMO: O algodoeiro (Gossypium hirsutum) é acometido por várias doenças de importância econômica, dentre as quais a meloidoginose (Meloidogyne incognita raças 3 e 4). Entre os métodos de controle dessa doença, destacam-se as aplicações de nematicidas, a solarização, a aração profunda, a rotação de culturas e o uso de microrganismos antagonistas. Dentre as espécies do gênero Bacillus, existem estirpes que atuam como biorreguladores e antagonistas de vários patógenos. Os testes para identificação dessas estirpes são prejudicados pela dificuldade de se obter grandes populações do patógeno e pelo tempo de execução dos testes in vivo que devem ser conduzidos por cerca de 90 dias. Diante disso, o presente trabalho teve como objetivo comparar a toxicidade de estirpes de B. thuringiensis a dois nematoides, M. icognita e Caenorhabditis elegans, verificando a possibilidade de empregar C. elegans como indicador para a seleção de estirpes com potencial de biocontrole contra M. incognita. Para tanto, a toxicidade de nove estirpes de B. thuringiensis para C. elegans e M. incognita foi avaliada em laboratório e em casa de vegetação. A maioria das estirpes tóxicas ao C. elegans in vitro, também foi tóxica ao M. incognita, sendo que três delas (S906, S1192, S2036) reduziram significativamente as populações dos dois nematoides. O efeito tóxico apresentado pelas estirpes de B. thuringiensis contra C. elegans foram similares aos apresentados pelos mesmos isolados contra M. incognita in vivo. Esses resultados sugerem que é plausível o uso do C. elegans como indicador de toxicidade para seleção de estirpes de B. thuringiensis tóxicas a M. incognita.

15.
Rev. argent. microbiol ; 49(4): 377-383, Dec. 2017. graf, tab
Article Dans Anglais | LILACS | ID: biblio-958019

Résumé

The aim of this research was to evaluate whether the application of two plant growth-promoting (rhizo)bacteria might reduce nitrogen fertilization doses in cotton. We used strains Azotobacter chroococcum AC1 and AC10 for their proven ability to promote seed germination and cotton growth. These microorganisms were characterized by their plant growth-promoting activities. Then, we conducted a glasshouse study to evaluate the plant growth promoting ability of these strains with reduced doses of urea fertilization in cotton. Results revealed that both strains are capable of fixing nitrogen, solubilizing phosphorus, synthesizing indole compounds and producing hydrolytic enzymes. After 12 weeks, the glasshouse experiment showed that cotton growth was positively influenced due to bacterial inoculation with respect to chemical fertilization. Notably, we observed that microbial inoculation further influenced plant biomass (p<0.05) than nitrogen content. Co-inoculation, interestingly, exhibited a greater beneficial effect on plant growth parameters compared to single inoculation. Moreover, similar results without significant statistical differences were observed among bacterial co-inoculation plus 50% urea and 100% fertilization. These findings suggest that coinoculation of A. chroococcum strains allow to reduce nitrogen fertilization doses up to 50% on cotton growth. Our results showed that inoculation with AC1 and AC10 represents a viable alternative to improve cotton growth while decreasing the N fertilizer dose and allows to alleviate the environmental deterioration related to N pollution.


El objetivo de esta investigación fue evaluar si la aplicación de 2 (rizo)bacterias promotoras del crecimiento vegetal podría reducir la dosis de fertilizante nitrogenado en el cultivo de algodón. Se usaron las cepas Azotobacter chroococcum AC1 y AC10 por su habilidad para promover la germinación de semillas y el crecimiento del algodonero. Estos microorganismos fueron caracterizados sobre la base de sus actividades de promoción del crecimiento vegetal. Luego se realizó un estudio de invernadero con plantas de algodón para evaluar la capacidad de promoción del crecimiento vegetal de dichas cepas con dosis reducidas de urea. Los resultados revelaron que ambas cepas son capaces de fijar nitrógeno, solubilizar fósforo, sintetizar compuestos indólicos y producir enzimas hidrolíticas. Después de 12 semanas, el experimento de invernadero permitió observar que el crecimiento del algodón fue influido positivamente por la inoculación bacteriana con respecto a la fertilización química. En particular, se evidenció que la inoculación microbiana impactó más en la biomasa vegetal (p<0,05) que en el contenido de nitrógeno. Curiosamente, la coinoculación exhibió un mayor efecto positivo sobre los parámetros de crecimiento en comparación con la inoculación simple. Además, se observaron resultados similares, sin diferencias estadísticamente significativas, entre la coinoculación bacteriana más del 50% de urea y el 100% de fertilización. Estos hallazgos indican que la coinoculación de las cepas de A. chroococcum AC1 y AC10 permitiría reducir las dosis de fertilización nitrogenada del cultivo de arroz en hasta el 50% y aliviar, de esta manera, el deterioro ambiental relacionado con la contaminación por N.


Sujets)
Azotobacter , Gossypium , Engrais , Bactéries , Gossypium/croissance et développement , Azote
16.
Braz. j. microbiol ; 48(4): 656-670, Oct.-Dec. 2017. tab, graf
Article Dans Anglais | LILACS | ID: biblio-889178

Résumé

ABSTRACT This study aimed to explore the effects of two siderophore-producing bacterial strains on iron absorption and plant growth of peanut in calcareous soil. Two siderophore-producing bacterial strains, namely, YZ29 and DZ13, isolated from the rhizosphere soil of peanut, were identified as Paenibacillus illinoisensis and Bacillus sp., respectively. In potted experiments, YZ29 and DZ13 enhanced root activity, chlorophyll and active iron content in leaves, total nitrogen, phosphorus and potassium accumulation of plants and increased the quality of peanut kernels and plant biomass over control. In the field trial, the inoculated treatments performed better than the controls, and the pod yields of the three treatments inoculated with YZ29, DZ13, and YZ29 + DZ13 (1:1) increased by 37.05%, 13.80% and 13.57%, respectively, compared with the control. Based on terminal restriction fragment length polymorphism analysis, YZ29 and DZ13 improved the bacterial community richness and species diversity of soil surrounding the peanut roots. Therefore, YZ29 and DZ13 can be used as candidate bacterial strains to relieve chlorosis of peanut and promote peanut growth. The present study is the first to explore the effect of siderophores produced by P. illinoisensis on iron absorption.


Sujets)
Arachis/croissance et développement , Arachis/microbiologie , Bacillus/métabolisme , Paenibacillus/métabolisme , Fer/métabolisme , Arachis/métabolisme , Arachis/composition chimique , Graines/croissance et développement , Graines/métabolisme , Graines/microbiologie , Graines/composition chimique , Sol/composition chimique , Microbiologie du sol , Bacillus/isolement et purification , Bacillus/classification , Bacillus/génétique , Transport biologique , Sidérophores/métabolisme , Racines de plante/microbiologie , Paenibacillus/isolement et purification , Paenibacillus/classification , Paenibacillus/génétique , Rhizosphère , Inoculants agricoles/métabolisme
17.
Braz. j. microbiol ; 48(1): 62-70, Jan.-Mar. 2017. tab, graf
Article Dans Anglais | LILACS | ID: biblio-839357

Résumé

Abstract This study aimed to evaluate the biocontrol potential of bacteria isolated from different plant species and soils. The production of compounds related to phytopathogen biocontrol and/or promotion of plant growth in bacterial isolates was evaluated by measuring the production of antimicrobial compounds (ammonia and antibiosis) and hydrolytic enzymes (amylases, lipases, proteases, and chitinases) and phosphate solubilization. Of the 1219 bacterial isolates, 92% produced one or more of the eight compounds evaluated, but only 1% of the isolates produced all the compounds. Proteolytic activity was most frequently observed among the bacterial isolates. Among the compounds which often determine the success of biocontrol, 43% produced compounds which inhibit mycelial growth of Monilinia fructicola, but only 11% hydrolyzed chitin. Bacteria from different plant species (rhizosphere or phylloplane) exhibited differences in the ability to produce the compounds evaluated. Most bacterial isolates with biocontrol potential were isolated from rhizospheric soil. The most efficient bacteria (producing at least five compounds related to phytopathogen biocontrol and/or plant growth), 86 in total, were evaluated for their biocontrol potential by observing their ability to kill juvenile Mesocriconema xenoplax. Thus, we clearly observed that bacteria that produced more compounds related to phytopathogen biocontrol and/or plant growth had a higher efficacy for nematode biocontrol, which validated the selection strategy used.


Sujets)
Maladies des plantes/microbiologie , Microbiologie du sol , Bactéries/classification , Phénomènes physiologiques bactériens , Bactéries/isolement et purification , Bactéries/génétique , ARN ribosomique 16S , Enzymes/biosynthèse , Rhizosphère , Ammoniac/métabolisme , Hydrolyse , Antibiose
18.
China Journal of Chinese Materia Medica ; (24): 4188-4193, 2016.
Article Dans Chinois | WPRIM | ID: wpr-272713

Résumé

The antagonistic effect of Bacillus spp. against Fusarium solani was evaluated by living body dual culture and Oxford cup method. The plant growth promoting properties of those strains that had obvious and stable antifungal activity were then tested. The results showed that the living body and bacteria-free fermentation filtrate of strain G10 both had obvious and stable antifungal effect to F. solani. Besides, the strain possessed such growth promoting properties as phosphate solubilization, nitrogen fixation, and production of IAA, amylase and HCN. Strain G10 was classified and identified as B. subtilis by a combination of morphological, physiological and biochemical tests, 16 SrDNA gene sequence analysis and the BBL CrystalTM bacteria identification. In conclusion, B. subtilis G10 has the basic characteristics of multifunctional strains and could be one of the microbiological resources for developing special bio-control agent against Astragalus root rot.

19.
China Journal of Chinese Materia Medica ; (24): 4564-4567, 2016.
Article Dans Chinois | WPRIM | ID: wpr-231020

Résumé

A rhizobacteria strain named RS-3 exhibited inhibitory activity against all five Panax ginseng pathogens was isolated from the root of P. ginseng. This strain was identified as Bacillus amyloliquefaciens based on its morphological character and 16S rDNA sequence. Antagonistic activity experiments indicated that the strain could strongly suppress Botrytis cinerea Pers with an inhibitory rate of 54.4%, suggesting the potentialities of biocontrol agent against diseases that frequently happen on ginseng.

20.
Rev. argent. microbiol ; 47(2): 132-137, June 2015.
Article Dans Espagnol | LILACS | ID: biblio-1147254

Résumé

En contraste con la simbiosis entre rizobios y leguminosas, la especificidad de las Pseudomonas en la colonización radicular parece menos estricta. Sin embargo, estudios sobre la diversidad bacteriana del nicho rizosférico resaltan la influencia de la especie vegetal en la selección específica de ciertos microorganismos a partir de la flora residente del suelo. Para evaluar el efecto que los cultivos extensivos de nuestro país tienen sobre la estructura de las comunidades de Pseudomonas, se realizaron experimentos con plantas trampa, partiendo de semillas de trigo, maíz y soja desinfectadas superficialmente y sembradas en un mismo suelo prístino. A partir de las suspensiones representativas de la microflora del rizoplano, se realizaron recuentos en placa en medio selectivo para Pseudomonas. El conjunto de colonias originado a partir de los distintos rizoplanos se utilizó como fuente de ADN para analizar la estructura de comunidad a través del perfil de restricción de amplicones de los genes oprF y gacA. El análisis comparativo de estos perfiles agrupó a las muestras por especie de planta y las distinguió del patrón obtenido a partir del suelo prístino. La secuenciación parcial del gen 16S ADNr de aislamientos bacterianos representativos confirmó la existencia de genotipos enriquecidos diferencialmente en el rizoplano de cada especie vegetal. Estos resultados apoyan la hipótesis de la existencia de mecanismos de selección específica de estirpes de Pseudomonas a partir de la flora nativa del suelo en la interacción cooperativa entre estas PGPR y las raíces de diferentes cultivos como trigo, soja y maíz


In contrast to rhizobia-legume symbiosis, the specificity for root colonization by pseudomonads seems to be less strict. However, several studies about bacterial diversity in the rhizosphere highlight the influence of plant species on the selective enrichment of certain microorganisms from the bulk soil community. In order to evaluate the effect that different crops have on the structure of pseudomonad community on the root surface, we performed plant trap experiments, using surface-disinfected maize, wheat or soybean seeds that were sown in pots containing the same pristine soil as substrate. Rhizoplane suspensions were plated on a selective medium for Pseudomonas, and pooled colonies served as DNA source to carry out PCR-RFLP community structure analysis of the pseudomonads-specific marker genes oprF and gacA. PCR-RFLP profiles were grouped by plant species, and were distinguished from those of bulk soil samples. Partial sequencing of 16S rDNA genes of some representative colonies of Pseudomonas confirmed the selective enrichment of distinctive genotypes in the rhizoplane of each plant species. These results support the idea that the root systems of agricultural crops such as soybean, maize and wheat, select differential sets of pseudomonads from the native microbial repertoire inhabiting the bulk soil


Sujets)
Pseudomonas/croissance et développement , Graines/microbiologie , ADN ribosomique/analyse , Rhizosphère , Génotype
SÉLECTION CITATIONS
Détails de la recherche