Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 4 de 4
Filtre
1.
Journal of Southern Medical University ; (12): 17-28, 2023.
Article Dans Chinois | WPRIM | ID: wpr-971490

Résumé

OBJECTIVE@#To propose a semi-supervised epileptic seizure prediction model (ST-WGAN-GP-Bi-LSTM) to enhance the prediction performance by improving time-frequency analysis of electroencephalogram (EEG) signals, enhancing the stability of the unsupervised feature learning model and improving the design of back-end classifier.@*METHODS@#Stockwell transform (ST) of the epileptic EEG signals was performed to locate the time-frequency information by adaptive adjustment of the resolution and retaining the absolute phase to obtain the time-frequency inputs. When there was no overlap between the generated data distribution and the real EEG data distribution, to avoid failure of feature learning due to a constant JS divergence, Wasserstein GAN was used as a feature learning model, and the cost function based on EM distance and gradient penalty strategy was adopted to constrain the unsupervised training process to allow the generation of a high-order feature extractor. A temporal prediction model was finally constructed based on a bi-directional long short term memory network (Bi-LSTM), and the classification performance was improved by obtaining the temporal correlation between high-order time-frequency features. The CHB-MIT scalp EEG dataset was used to validate the proposed patient-specific seizure prediction method.@*RESULTS@#The AUC, sensitivity, and specificity of the proposed method reached 90.40%, 83.62%, and 86.69%, respectively. Compared with the existing semi-supervised methods, the propose method improved the original performance by 17.77%, 15.41%, and 53.66%. The performance of this method was comparable to that of a supervised prediction model based on CNN.@*CONCLUSION@#The utilization of ST, WGAN-GP, and Bi-LSTM effectively improves the prediction performance of the semi-supervised deep learning model, which can be used for optimization of unsupervised feature extraction in epileptic seizure prediction.


Sujets)
Humains , Mémoire à court terme , Crises épileptiques/diagnostic , Électroencéphalographie
2.
Journal of Biomedical Engineering ; (6): 1193-1202, 2021.
Article Dans Chinois | WPRIM | ID: wpr-921861

Résumé

As a common disease in nervous system, epilepsy is possessed of characteristics of high incidence, suddenness and recurrent seizures. Timely prediction with corresponding rescues and treatments can be regarded as effective countermeasure to epilepsy emergencies, while most accidental injuries can thus be avoided. Currently, how to use electroencephalogram (EEG) signals to predict seizure is becoming a highlight topic in epilepsy researches. In spite of significant progress that made, more efforts are still to be made before clinical applications. This paper reviews past epilepsy studies, including research records and critical technologies. Contributions of machine learning (ML) and deep learning (DL) on seizure predictions have been emphasized. Since feature selection and model generalization limit prediction ratings of conventional ML measures, DL based seizure predictions predominate future epilepsy studies. Consequently, more exploration may be vitally important for promoting clinical applications of epileptic seizure prediction.


Sujets)
Humains , Électroencéphalographie , Épilepsie/diagnostic , Apprentissage machine , Crises épileptiques/diagnostic , Traitement du signal assisté par ordinateur
3.
Journal of Biomedical Engineering ; (6): 329-336, 2018.
Article Dans Chinois | WPRIM | ID: wpr-687626

Résumé

Seizures during sleep increase the probability of complication and sudden death. Effective prediction of seizures in sleep allows doctors and patients to take timely treatments to reduce the aforementioned probability. Most of the existing methods make use of electroencephalogram (EEG) to predict seizures, which are not specific developed for the sleep. However, EEG during sleep has its characteristics compared with EEG during other states. Therefore, in order to improve the sensitivity and reduce the false alarm rate, this paper utilized the characteristics of EEG to predict seizures during sleep. We firstly constructed the feature vector including the absolute power spectrum, the relative power spectrum and the power spectrum ratio in different frequencies. Secondly, the separation criterion and branch-and-bound method were applied to select features. Finally, support vector machine classifier were trained, which is then employed for online prediction. Compared with the existing method that do not consider the characteristics of sleeping EEG (sensitivity 91.67%, false alarm rate 9.19%), the proposed method was superior in terms of sensitivity (100%) and false alarm rate (2.11%). This method can improve the existing epilepsy prediction methods and has important clinical value.

4.
Biomedical Engineering Letters ; (4): 1-5, 2017.
Article Dans Anglais | WPRIM | ID: wpr-645474

Résumé

This study investigates the sensitivity and specificity of predicting epileptic seizures from intracranial electroencephalography (iEEG). A monitoring system is studied to generate an alarm upon detecting a precursor of an epileptic seizure. The iEEG traces of ten patients suffering from medically intractable epilepsy were used to build a prediction model. From the iEEG recording of each patient, power spectral densities were calculated and classified using support vector machines. The prediction results varied across patients. For seven patients, seizures were predicted with 100% sensitivity without any false alarms. One patient showed good sensitivity but lower specificity, and the other two patients showed lower sensitivity and specificity. Predictive analytics based on the spectral feature of iEEG performs well for some patients but not all. This result highlights the need for patient-specific prediction models and algorithms.


Sujets)
Humains , Épilepsie pharmacorésistante , Électrocorticographie , Électroencéphalographie , Épilepsie , Crises épileptiques , Sensibilité et spécificité , Machine à vecteur de support
SÉLECTION CITATIONS
Détails de la recherche