Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 2 de 2
Filtre
Ajouter des filtres








Gamme d'année
1.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 64-70, 2024.
Article Dans Chinois | WPRIM | ID: wpr-1003409

Résumé

ObjectiveTo explore the protective effect and mechanism of Zingiberis Rhizoma Recens alcohol extract on lipopolysaccharide (LPS)-induced acute lung injury in mice. MethodBalb/c mice were randomly divided into normal group, model group, dexamethasone group, and low- and high-dose Zingiberis Rhizoma Recens groups. Mice in the normal group were instilled with normal saline through the nose, and the other groups were instilled with normal saline containing LPS (50 μg). After 30 minutes of modeling, the dexamethasone group was gavaged with 5 mg·kg-1 of dexamethasone acetate solution, the low- and high-dose Zingiberis Rhizoma Recens groups were gavaged with different doses of (7, 14 g·kg-1) of Zingiberis Rhizoma Recens alcohol extract, and the normal group and the model group were gavaged with the same volume of water. After 24 hours of modeling, the total number of white blood cells in bronchoalceolar lavage fluid (BALF) was detected by cell counter, and the levels of the inflammatory factors including tumor necrosis factor (TNF)-α, interleukin (IL)-1β, IL-6, and superoxide dismutase (SOD), and myeloperoxidase (MPO) was detected by enzyme-linked immunosorbent assay (ELISA). Haematoxylin-eosin (HE) staining method was used to observe the pathological changes of lung tissue in each group, and the Western blot was used to detect the protein expression of nuclear transcription factor (NF)-κB p65, phosphorylation (p)-NF-κB p65, and Toll-like receptor 4 (TLR4) in lung tissue. ResultCompared with the normal group, the white blood cell count in BALF and the levels of TNF-α, IL-1β, IL-6, and MPO in the model group was increased (P<0.01), and the level of SOD was decreased (P<0.05). Pathological damage of lung tissue was obvious, and the protein expression of NF-κB p65, p-NF-κB p65, and TLR4 in lung tissue was increased (P<0.01). Compared with the model group, the white blood cell count in BALF and the levels of TNF-α, IL-1β, IL-6, and MPO in the treatment group was decreased (P<0.05,P<0.01), and the level of SOD was increased (P<0.05,P<0.01). Pathological damage of lung tissue was alleviated, and the protein expression of NF-κB p65, p-NF-κB p65, and TLR4 in lung tissue was decreased (P<0.01). ConclusionZingiberis Rhizoma Recens alcohol extract may play a protective role in LPS-induced acute lung injury in mice by inhibiting the TLR4/NF-κB signaling pathway.

2.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 95-103, 2023.
Article Dans Chinois | WPRIM | ID: wpr-998167

Résumé

ObjectiveTo explore the action mechanism of Linggan Wuwei Jiangxintang on the treatment of lipopolysaccharide (LPS)-induced acute lung injury (ALI) in mice. MethodTraditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP), GeneCards, DisGeNET, and Herb databases were combined with clinical data from Gene Expression Omnibus (GEO) to screen the key targets of Linggan Wuwei Jiangxintang in the treatment of ALI. The protein-protein interaction (PPI) network was constructed to screen the core targets, and gene ontology (GO) and Kyoto encyclopedia of genes and genomes (KEGG) pathway enrichment analyses were performed. The mouse ALI model was established by LPS induction to verify the effect and key targets of Linggan Wuwei Jiangxintang on the treatment of ALI. The expression levels of Toll-like receptor 4 (TLR4), nuclear transcription factor-κB p65 (NF-κB p65), and phosphorylated NF-κB p65 (NF-κB p-p65) in lung tissue were detected by Western blot. ResultThe analysis showed that the treatment of ALI with Linggan Wuwei Jiangxintang was related to 10 core targets such as interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α), and JUN, involving TNF signaling pathway, Toll-like receptor signaling pathway, NF-κB signaling pathway, etc. The animal experimental results show that Linggan Wuwei Jiangxintang can reduce lung injury, improve the pathological state of ALI mice, significantly reduce the expression of TNF-α and IL-6 in serum, increase the activity of total superoxide dismutase (T-SOD) and catalase (CAT) in lung tissue, and reduce the expression levels of JUN, TLR4, NF-κB p65, and NF-κB p-p65 proteins in lung tissue. ConclusionLinggan Wuwei Jiangxintang can inhibit LPS-induced inflammation and oxidative damage in ALI mice, and its mechanism may be related to the inhibition of TLR4/NF-κB signaling pathway and the reduction of inflammatory factors such as TNF-α and IL-6.

SÉLECTION CITATIONS
Détails de la recherche