Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 2.280
Filtrer
1.
J. bras. nefrol ; 46(3): e20240035, July-Sept. 2024. graf
Article de Anglais | LILACS-Express | LILACS | ID: biblio-1564717

RÉSUMÉ

Abstract Renal involvement is one of the most severe morbidities of Fabry disease (FD), a multisystemic lysosomal storage disease with an X-linked inheritance pattern. It results from pathogenic variants in the GLA gene (Xq22.2), which encodes the production of alpha-galactosidase A (α-Gal), responsible for glycosphingolipid metabolism. Insufficient activity of this lysosomal enzyme generates deposits of unprocessed intermediate substrates, especially globotriaosylceramide (Gb3) and derivatives, triggering cellular injury and subsequently, multiple organ dysfunction, including chronic nephropathy. Kidney injury in FD is classically attributed to Gb3 deposits in renal cells, with podocytes being the main target of the pathological process, in which structural and functional alterations are established early and severely. This configures a typical hereditary metabolic podocytopathy, whose clinical manifestations are proteinuria and progressive renal failure. Although late clinical outcomes and morphological changes are well established in this nephropathy, the molecular mechanisms that trigger and accelerate podocyte injury have not yet been fully elucidated. Podocytes are highly specialized and differentiated cells that cover the outer surface of glomerular capillaries, playing a crucial role in preserving the structure and function of the glomerular filtration barrier. They are frequent targets of injury in many nephropathies. Furthermore, dysfunction and depletion of glomerular podocytes are essential events implicated in the pathogenesis of chronic kidney disease progression. We will review the biology of podocytes and their crucial role in regulating the glomerular filtration barrier, analyzing the main pathogenic pathways involved in podocyte injury, especially related to FD nephropathy.


Resumo O acometimento renal é uma das mais severas morbidades da doença de Fabry (DF), enfermidade multissistêmica de depósito lisossômico com padrão de herança ligada ao cromossomo X, decorrente de variantes patogênicas do gene GLA (Xq22.2), que codifica a produção de alfa-galactosidase A (α-Gal), responsável pelo metabolismo de glicoesfingolipídeos. A atividade insuficiente dessa enzima lisossômica gera depósitos de substratos intermediários não processados, especialmente do globotriaosilceramida (Gb3) e derivados, desencadeando injúria celular e, posteriormente, disfunção de múltiplos órgãos, incluindo a nefropatia crônica. A lesão renal na DF é classicamente atribuída aos depósitos de Gb3 nas células renais, sendo os podócitos o alvo principal do processo patológico, nos quais as alterações estruturais e funcionais são instaladas de forma precoce e severa, configurando uma podocitopatia metabólica hereditária típica, cujas manifestações clínicas são proteinúria e falência renal progressiva. Embora os desfechos clínicos tardios e as alterações morfológicas estejam bem estabelecidos nessa nefropatia, os mecanismos moleculares que deflagram e aceleram a injúria podocitária ainda não estão completamente elucidados. Podócitos são células altamente especializadas e diferenciadas que revestem a superfície externa dos capilares glomerulares, desempenhando papel essencial na preservação da estrutura e função da barreira de filtração glomerular, sendo alvos frequentes de injúria em muitas nefropatias. A disfunção e depleção dos podócitos glomerulares são, além disso, eventos cruciais implicados na patogênese da progressão da doença renal crônica. Revisaremos a biologia dos podócitos e seu papel na regulação da barreira de filtração glomerular, analisando as principais vias patogênicas envolvidas na lesão podocitária, especialmente relacionadas à nefropatia da DF.

2.
Int. j. morphol ; 42(4): 1080-1095, ago. 2024. ilus, tab
Article de Anglais | LILACS | ID: biblio-1569275

RÉSUMÉ

SUMMARY: Marein is a flavonoid compound that reduces blood glucose and lipids and has a protective effect in diabetes. However, the effect and mechanism(s) of marein on renal endothelial-mesenchymal transition in diabetic kidney disease (DKD) have not been elucidated. In this study, single-cell sequencing data on DKD were analyzed using a bioinformation method, and the data underwent reduced dimension clustering. It was found that endothelial cells could be divided into five subclusters. The developmental sequence of the subclusters was 0, 1, 4, 2, and 3, of which subcluster 3 had the most interstitial phenotype.The expression of mesenchymal marker protein:Vimentin(VIM), Fibronectin(FN1), and fibroblast growth factor receptor 1 (FGFR1) increased with the conversion of subclusters. In db/db mice aged 13-14 weeks, which develop DKD complications after 8-12 weeks of age, marein reduced blood levels of glucose, creatinine, and urea nitrogen, improved structural damage in kidney tissue, and reduced collagen deposition and the expression of FN1 and VIM. Marein also up-regulated autophagy marker:Light chain 3II/I(LC3II/I) and decreased FGFR1 expression in renal tissue. In an endothelial-mesenchymal transition model, a high glucose level induced a phenotypic change in human umbilical vein endothelial cells. Marein decreased endothelial cell migration, improved endothelial cell morphology, and decreased the expression of VIM and FN1. The use of the FGFR1 inhibitor, AZD4547, and autophagy inhibitor, 3-Methyladenine(3-MA), further demonstrated the inhibitory effect of marein on high glucose-induced endothelial-mesenchymal transition by reducing FGFR1 expression and up-regulating the autophagy marker protein, LC3II/I. In conclusion, this study suggests that marein has a protective effect on renal endothelial- mesenchymal transition in DKD, which may be mediated by inducing autophagy and down-regulating FGFR1 expression.


La mareína es un compuesto flavonoide que reduce la glucosa y los lípidos en sangre y tiene un efecto protector en la diabetes. Sin embargo, no se han dilucidado el efecto y los mecanismos de la mareína sobre la transición endotelial- mesenquimatosa renal en la enfermedad renal diabética (ERD). En este estudio, los datos de secuenciación unicelular sobre DKD se analizaron utilizando un método de bioinformación y los datos se sometieron a una agrupación de dimensiones reducidas. Se descubrió que las células endoteliales podían dividirse en cinco subgrupos. La secuencia de desarrollo de los subgrupos fue 0, 1, 4, 2 y 3, de los cuales el subgrupo 3 tenía el fenotipo más intersticial. La expresión de la proteína marcadora mesenquimatosa: vimentina (VIM), fibronectina (FN1) y receptor del factor de crecimiento de fibroblastos. 1 (FGFR1) aumentó con la conversión de subgrupos. En ratones db/db de 13 a 14 semanas de edad, que desarrollan complicaciones de DKD después de las 8 a 12 semanas de edad, la mareína redujo los niveles sanguíneos de glucosa, creatinina y nitrógeno ureico, mejoró el daño estructural en el tejido renal y redujo la deposición y expresión de colágeno de FN1 y VIM. Marein también aumentó el marcador de autofagia: Cadena ligera 3II/I (LC3II/I) y disminuyó la expresión de FGFR1 en el tejido renal. En un modelo de transición endotelial-mesenquimal, un nivel alto de glucosa indujo un cambio fenotípico en las células endoteliales de la vena umbilical humana. Marein disminuyó la migración de células endoteliales, mejoró la morfología de las células endoteliales y disminuyó la expresión de VIM y FN1. El uso del inhibidor de FGFR1, AZD4547, y del inhibidor de la autofagia, 3-metiladenina (3-MA), demostró aún más el efecto inhibidor de la mareína en la transición endotelial-mesenquimal inducida por niveles altos de glucosa al reducir la expresión de FGFR1 y regular positivamente la proteína marcadora de autofagia. , LC3II/I. En conclusión, este estudio sugiere que la mareína tiene un efecto protector sobre la transición endotelial-mesenquimatosa renal en la ERC, que puede estar mediada por la inducción de autofagia y la regulación negativa de la expresión de FGFR1.


Sujet(s)
Chalcones/pharmacologie , Néphropathies diabétiques/traitement médicamenteux , Endothelial-Mesenchymal Transition , Autophagie , Biologie informatique , Récepteur FGFR1
3.
Braz. j. med. biol. res ; 57: e13152, fev.2024. graf
Article de Anglais | LILACS-Express | LILACS | ID: biblio-1534071

RÉSUMÉ

Abstract The cure rates for osteosarcoma have remained unchanged in the past three decades, especially for patients with pulmonary metastasis. Thus, a new and effective treatment for metastatic osteosarcoma is urgently needed. Anlotinib has been reported to have antitumor effects on advanced osteosarcoma. However, both the effect of anlotinib on autophagy in osteosarcoma and the mechanism of anlotinib-mediated autophagy in pulmonary metastasis are unclear. The effect of anlotinib treatment on the metastasis of osteosarcoma was investigated by transwell assays, wound healing assays, and animal experiments. Related proteins were detected by western blotting after anlotinib treatment, ATG5 silencing, or ATG5 overexpression. Immunofluorescence staining and transmission electron microscopy were used to detect alterations in autophagy and the cytoskeleton. Anlotinib inhibited the migration and invasion of osteosarcoma cells but promoted autophagy and increased ATG5 expression. Furthermore, the decreases in invasion and migration induced by anlotinib treatment were enhanced by ATG5 silencing. In addition, Y-27632 inhibited cytoskeletal rearrangement, which was rescued by ATG5 overexpression. ATG5 overexpression enhanced epithelial-mesenchymal transition (EMT). Mechanistically, anlotinib-induced autophagy promoted migration and invasion by activating EMT and cytoskeletal rearrangement through ATG5 both in vitro and in vivo. Our results demonstrated that anlotinib can induce protective autophagy in osteosarcoma cells and that inhibition of anlotinib-induced autophagy enhanced the inhibitory effects of anlotinib on osteosarcoma metastasis. Thus, the therapeutic effect of anlotinib treatment can be improved by combination treatment with autophagy inhibitors, which provides a new direction for the treatment of metastatic osteosarcoma.

4.
Braz. j. med. biol. res ; 57: e13019, fev.2024. tab, graf
Article de Anglais | LILACS-Express | LILACS | ID: biblio-1550146

RÉSUMÉ

Abstract Autophagy-related gene (ATG) 5 regulates blood lipids, chronic inflammation, CD4+ T-cell differentiation, and neuronal death and is involved in post-stroke cognitive impairment. This study aimed to explore the correlation of serum ATG5 with CD4+ T cells and cognition impairment in stroke patients. Peripheral blood was collected from 180 stroke patients for serum ATG5 and T helper (Th) 1, Th2, Th17, and regulatory T (Treg) cell detection via enzyme-linked immunosorbent assays and flow cytometry. The Mini-Mental State Examination (MMSE) scale was completed at enrollment, year (Y)1, Y2, and Y3 in stroke patients. Serum ATG5 was also measured in 50 healthy controls (HCs). Serum ATG5 was elevated in stroke patients compared to HCs (P<0.001) and was positively correlated to Th2 cells (P=0.022), Th17 cells (P<0.001), and Th17/Treg ratio (P<0.001) in stroke patients but not correlated with Th1 cells, Th1/Th2 ratio, or Treg cells (all P>0.050). Serum ATG5 (P=0.037), Th1 cells (P=0.022), Th17 cells (P=0.002), and Th17/Treg ratio (P=0.018) were elevated in stroke patients with MMSE score-identified cognition impairment vs those without cognition impairment, whereas Th2 cells, Th1/Th2 ratio, and Treg cells were not different between them (all P>0.050). Importantly, serum ATG5 was negatively linked with MMSE score at enrollment (P=0.004), Y1 (P=0.002), Y2 (P=0.014), and Y3 (P=0.001); moreover, it was positively related to 2-year (P=0.024) and 3-year (P=0.012) MMSE score decline in stroke patients. Serum ATG5 was positively correlated with Th2 and Th17 cells and estimated cognitive function decline in stroke patients.

5.
Braz. j. med. biol. res ; 57: e13351, fev.2024. tab, graf
Article de Anglais | LILACS-Express | LILACS | ID: biblio-1550147

RÉSUMÉ

Abstract The complex pathogenesis of castration-resistant prostate cancer (CRPC) makes it challenging to identify effective treatment methods. Matrix metalloproteinase (MMP)-12 can degrade elastin as well as various extracellular matrix (ECM) components, which is associated with cancer progression. However, the relationship between MMP-12 and CRPC progression is poorly understood. In this study, we observed the effect of MMP-12 on the progression of CRPC and further explored its potential mechanism of action. High levels of MMP-12 were observed in patients with CRPC. We therefore developed cell co-culture and mouse models to study the function of MMP-12. Silencing MMP-12 in CRPC cells disrupted lipid utilization and autophagy marker expression via the CD36/CPT1 and P62/LC3 pathways, respectively, leading to reduced CRPC cell migration and invasion. Moreover, animal experiments confirmed that MMP-12-knockdown CRPC xenograft tumors exhibited reduced tumor growth, and the mechanisms involved the promotion of cancer cell autophagy and the inhibition of lipid catabolism. According to our results, MMP-12 played important roles in the progression of CRPC by disrupting adipocyte maturation and regulating cancer migration and invasion via the modulation of autophagy and lipid catabolism pathways.

6.
Braz. j. med. biol. res ; 57: e13379, fev.2024. graf
Article de Anglais | LILACS-Express | LILACS | ID: biblio-1557310

RÉSUMÉ

Ulcerative colitis (UC) is a difficult intestinal disease characterized by inflammation, and its mechanism is complex and diverse. Angiopoietin-like protein 2 (ANGPT2) plays an important regulatory role in inflammatory diseases. However, the role of ANGPT2 in UC has not been reported so far. After exploring the expression level of ANGPT2 in serum of UC patients, the reaction mechanism of ANGPT2 was investigated in dextran sodium sulfate (DSS)-induced UC mice. After ANGPT2 expression was suppressed, the clinical symptoms and pathological changes of UC mice were detected. Colonic infiltration, oxidative stress, and colonic mucosal barrier in UC mice were evaluated utilizing immunohistochemistry, immunofluorescence, and related kits. Finally, western blot was applied for the estimation of mTOR signaling pathway and NLRP3 inflammasome-related proteins. ANGPT2 silencing improved clinical symptoms and pathological changes, alleviated colonic inflammatory infiltration and oxidative stress, and maintained the colonic mucosal barrier in DSS-induced UC mice. The regulatory effect of ANGPT2 on UC disease might occur by regulating the mTOR signaling pathway and thus affecting autophagy-mediated NLRP3 inflammasome inactivation. ANGPT2 silencing alleviated UC by regulating autophagy-mediated NLRP3 inflammasome inactivation via the mTOR signaling pathway.

7.
Braz. j. med. biol. res ; 57: e13474, fev.2024. graf
Article de Anglais | LILACS-Express | LILACS | ID: biblio-1557323

RÉSUMÉ

Coenzyme Q10 (CoQ10) is a potent antioxidant that is implicated in the inhibition of osteoclastogenesis, but the underlying mechanism has not been determined. We explored the underlying molecular mechanisms involved in this process. RAW264.7 cells received receptor activator of NF-κB ligand (RANKL) and CoQ10, after which the differentiation and viability of osteoclasts were assessed. After the cells were treated with CoQ10 and/or H2O2 and RANKL, the levels of reactive oxygen species (ROS) and proteins involved in the PI3K/AKT/mTOR and MAPK pathways and autophagy were tested. Moreover, after the cells were pretreated with or without inhibitors of the two pathways or with the mitophagy agonist, the levels of autophagy-related proteins and osteoclast markers were measured. CoQ10 significantly decreased the number of TRAP-positive cells and the level of ROS but had no significant impact on cell viability. The relative phosphorylation levels of PI3K, AKT, mTOR, ERK, and p38 were significantly reduced, but the levels of FOXO3/LC3/Beclin1 were significantly augmented. Moreover, the levels of FOXO3/LC3/Beclin1 were significantly increased by the inhibitors and mitophagy agonist, while the levels of osteoclast markers showed the opposite results. Our data showed that CoQ10 prevented RANKL-induced osteoclastogenesis by promoting autophagy via inactivation of the PI3K/AKT/mTOR and MAPK pathways in RAW264.7 cells.

8.
Braz. j. med. biol. res ; 57: e13590, fev.2024. graf
Article de Anglais | LILACS-Express | LILACS | ID: biblio-1557327

RÉSUMÉ

Adenine nucleotide translocator 4 (Ant4), an ATP/ADP transporter expressed in the early phases of spermatogenesis, plays a crucial role in male fertility. While Ant4 loss causes early arrest of meiosis and increased apoptosis of spermatogenic cells in male mice, its other potential functions in male fertility remain unexplored. Here, we utilized Ant4 knockout mice to delineate the effects of Ant4-deficiency on male reproduction. Our observations demonstrated that Ant4-deficiency led to infertility and impaired testicular development, which was further investigated by evaluating testicular oxidative stress, autophagy, and inflammation. Specifically, the loss of Ant4 led to an imbalance of oxidation and antioxidants. Significant ultrastructural alterations were identified in the testicular tissues of Ant4-deficient mice, including swelling of mitochondria, loss of cristae, and accumulation of autophagosomes. Our results also showed that autophagic flux and AKT-AMPK-mTOR signaling pathway were affected in Ant4-deficient mice. Moreover, Ant4 loss increased the expression of pro-inflammatory factors. Overall, our findings underscored the importance of Ant4 in regulating oxidative stress, autophagy, and inflammation in testicular tissues. Taken together, these insights provided a nuanced understanding of the significance of Ant4 in testicular development.

9.
China Pharmacy ; (12): 283-289, 2024.
Article de Chinois | WPRIM | ID: wpr-1006611

RÉSUMÉ

OBJECTIVE To investigate the attenuation and synergism of Hugan buzure recipe (HBR) combined with oxaliplatin on hepatocellular carcinoma tumor bearing nude mice and its mechanism. METHODS Eight nude mice were selected from 40 nude mice as the blank group (normal saline), and the remaining nude mice were inoculated with hepatoma cells Huh7 to establish the tumor-bearing model. The 32 modeled nude mice were randomly allocated to four groups: model group (normal saline, ig), HBR group (0.69 g/kg, ig), oxaliplatin group (10 mg/kg, ip), and combination group (intraperitoneal injection of 0.69 g/kg HBR+intragastric administration of 10 mg/kg oxaliplatin), with 8 mice in each group. Administer drug/normal saline once a day for 32 consecutive days; administer subcutaneous injection once every 7 days for a total of 5 times. During the experiment, the general condition of nude mice in each group was observed, and the tumor volume was measured every 4 days. On the 30th day of administration, the thermal stimulation paw withdrawal latency of nude mice in each group were detected. The tumor inhibition rate, spleen coefficient, the number of red blood cells, white blood cells and platelets in the whole blood of nude mice in each group, and the content of aspartate aminotransferase (AST) and creatinine in serum were detected after the end of administration. HE staining was used to observe the pathological changes in tumor tissues in nude mice in each group. The expression of microtubule-associated protein 1 light chain 3 (LC3),selective autophagy adaptor protein p62, B-cell lymphoma-2 (Bcl-2), Bcl-2 associated X protein (Bax), and Caspase-3 protein in tumor tissues. RESULT Compared with the model group, the tumor volume, tumor weight, white blood cells,red blood cells in the whole blood and spleen coefficients of nude mice in the oxaliplatin group were significantly decreased (P<0.01); the thermal stimulation paw withdrawal latency, AST and creatinine in serum were significantly increased (P<0.05 or P<0.01). Compared with the oxaliplatin group, the tumor volume and tumor weight of nude mice in the combination group were significantly decreased (P<0.01); the white blood cells, red blood cells and platelets in the whole blood and spleen coefficients of nude mice were significantly increased (P<0.05 or P<0.01); the thermal stimulation paw withdrawal latency, AST and creatinine in serum were significantly decreased (P<0.01); the expression levels of LC3, Bax and Caspase-3 proteins in tumor tissues of nude mice were significantly increased (P<0.01), and the expression levels of p62 and Bcl-2 proteins were significantly decreased (P<0.01). CONCLUSIONS HBR enhances the tumor inhibition rate of oxaliplatin by inducing apoptosis and autophagy, and can alleviate the peripheral neurotoxicity, hematological toxicity, hepatorenal toxicity, and immune organ toxicity caused by oxaliplatin in nude mice.

10.
Article de Chinois | WPRIM | ID: wpr-1007224

RÉSUMÉ

Objective To investigate the effect of dihydroartemisinin (DHC) on the proliferation capacity of human oral squamous carcinoma cells and its mechanism of action. Methods The viability and colony formation ability of CAL27 cells treated with different concentrations of dihydroartemisinin was measured by CCK-8 and colony formation assay. The expression of proteins related to proliferation and autophagy was determined by Western blot. Potential targets for DHA inhibition of the biological behavior of oral cancer were screened based on network pharmacology and bioinformatics. Measurement was conducted after the cells were cotreated with autophagy blocker 3-methyladenine and autophagy inducers rapamycin and dihydroartemisinin. Results Dihydroartemisinin significantly reduced the proliferation viability and clone formation ability of CAL27 cells in a concentration-dependent manner. The PCNA expression level also decreased substantially. DHA suppressed oral cancer targets involving autophagy-related pathways. DHA intervention increased the expression of intracellular autophagy-related proteins Beclin-1 and LC3. After co-treatment of DHA combined with autophagy blocker, the proliferation viability and clone formation ability of CAL27 cells decreased. The expression of PCNA increased, and the expression of Beclin-1 and LC3 decreased. Conclusion Dihydroartemisinin could inhibit the proliferative capacity of oral squamous carcinoma cells in vitro, and its effect may be correlated with the induction of autophagy.

11.
Article de Chinois | WPRIM | ID: wpr-1007270

RÉSUMÉ

Ischemia and hypoxia cause functional damage to brain tissues during stroke, and when blood supply is restored to brain tissues after ischemia, a large number of free radicals and calcium overload cause cerebral ischemia-reperfusion injury, which further aggravates the condition. Autophagy is a self-protection mechanism that maintains the homeostasis of the intracellular environment, but excessive autophagy causes brain tissue damage. MiRNA is a small endogenous non-coding RNA molecule that regulate various physiological activities at the gene level by binding to complementary sequences in the 3 '- UTR of its target gene mRNA, leading to translation inhibition or mRNA degradation. MiRNA not only directly acts on autophagy related proteins, but also participates in autophagy regulation induced by ischemia/reperfusion through various signaling pathways. However, there is still a lack of systematic induction and analysis of miRNA regulation of autophagy signaling pathways induced by cerebral ischemia/reperfusion. This article reviews the regulation of cellular autophagy during cerebral ischemia/ reperfusion by miRNA-124, miRNA-298, miRNA-202-5p, miRNA-142, miRNA-26b and so on through different signaling pathways, providing a systematic and theoretical approach for the study of autophagy in stroke.

12.
Article de Anglais | WPRIM | ID: wpr-1007908

RÉSUMÉ

OBJECTIVE@#The aim of this study is to explore the potential modulatory role of quercetin against Endotoxin or lipopolysaccharide (LPS) induced septic cardiac dysfunction.@*METHODS@#Specific pathogen-free chicken embryos ( n = 120) were allocated untreated control, phosphate buffer solution (PBS) vehicle, PBS with ethanol vehicle, LPS (500 ng/egg), LPS with quercetin treatment (10, 20, or 40 nmol/egg, respectively), Quercetin groups (10, 20, or 40 nmol/egg). Fifteen-day-old embryonated eggs were inoculated with abovementioned solutions via the allantoic cavity. At embryonic day 19, the hearts of the embryos were collected for histopathological examination, RNA extraction, real-time polymerase chain reaction, immunohistochemical investigations, and Western blotting.@*RESULTS@#They demonstrated that the heart presented inflammatory responses after LPS induction. The LPS-induced higher mRNA expressions of inflammation-related factors (TLR4, TNFα, MYD88, NF-κB1, IFNγ, IL-1β, IL-8, IL-6, IL-10, p38, MMP3, and MMP9) were blocked by quercetin with three dosages. Quercetin significantly decreased immunopositivity to TLR4 and MMP9 in the treatment group when compared with the LPS group. Quercetin significantly decreased protein expressions of TLR4, IFNγ, MMP3, and MMP9 when compared with the LPS group. Quercetin treatment prevented LPS-induced increase in the mRNA expression of Claudin 1 and ZO-1, and significantly decreased protein expression of claudin 1 when compared with the LPS group. Quercetin significantly downregulated autophagy-related gene expressions (PPARα, SGLT1, APOA4, AMPKα1, AMPKα2, ATG5, ATG7, Beclin-1, and LC3B) and programmed cell death (Fas, Bcl-2, CASP1, CASP12, CASP3, and RIPK1) after LPS induction. Quercetin significantly decreased immunopositivity to APOA4, AMPKα2, and LC3-II/LC3-I in the treatment group when compared with the LPS group. Quercetin significantly decreased protein expressions of AMPKα1, LC3-I, and LC3-II. Quercetin significantly decreased the protein expression to CASP1 and CASP3 by immunohistochemical investigation or Western blotting in treatment group when compared with LPS group.@*CONCLUSION@#Quercetin alleviates cardiac inflammation induced by LPS through modulating autophagy, programmed cell death, and myocardiocytes permeability.


Sujet(s)
Embryon de poulet , Animaux , Quercétine/usage thérapeutique , Lipopolysaccharides/toxicité , Matrix metalloproteinase 9 , Caspase-3 , Matrix metalloproteinase 3 , Récepteur de type Toll-4 , Claudine-1 , Inflammation/métabolisme , Apoptose , ARN messager , Autophagie , Facteur de transcription NF-kappa B
13.
Article de Anglais | WPRIM | ID: wpr-1010332

RÉSUMÉ

OBJECTIVE@#To explore the mechanism of electroacupuncture (EA) in promoting recovery of the facial function with the involvement of autophagy, glial cell line-derived neurotrophic factor (GDNF), and phosphatidylinositol-3-kinase (PI3K)/mammalian target of rapamycin (mTOR) signaling pathway.@*METHODS@#Seventy-two male Sprague-Dawley rats were randomly allocated into the control, sham-operated, facial nerve injury (FNI), EA, EA+3-methyladenine (3-MA), and EA+GDNF antagonist groups using a random number table, with 12 rats in each group. An FNI rat model was established with facial nerve crushing method. EA intervention was conducted at Dicang (ST 4), Jiache (ST 6), Yifeng (SJ 17), and Hegu (LI 4) acupoints for 2 weeks. The Simone's 10-Point Scale was utilized to monitor the recovery of facial function. The histopathological evaluation of facial nerves was performed using hematoxylin-eosin (HE) staining. The levels of Beclin-1, light chain 3 (LC3), and P62 were detected by immunohistochemistry (IHC), immunofluorescence, and reverse transcription-polymerase chain reaction, respectively. Additionally, IHC was also used to detect the levels of GDNF, Rai, PI3K, and mTOR.@*RESULTS@#The facial functional scores were significantly increased in the EA group than the FNI group (P<0.05 or P<0.01). HE staining showed nerve axons and myelin sheaths, which were destroyed immediately after the injury, were recovered with EA treatment. The expressions of Beclin-1 and LC3 were significantly elevated and the expression of P62 was markedly reduced in FNI rats (P<0.01); however, EA treatment reversed these abnormal changes (P<0.01). Meanwhile, EA stimulation significantly increased the levels of GDNF, Rai, PI3K, and mTOR (P<0.01). After exogenous administration with autophagy inhibitor 3-MA or GDNF antagonist, the repair effect of EA on facial function was attenuated (P<0.05 or P<0.01).@*CONCLUSIONS@#EA could promote the recovery of facial function and repair the facial nerve damages in a rat model of FNI. EA may exert this neuroreparative effect through mediating the release of GDNF, activating the PI3K/mTOR signaling pathway, and further regulating the autophagy of facial nerves.


Sujet(s)
Rats , Mâle , Animaux , Rat Sprague-Dawley , Électroacupuncture , Phosphatidylinositol 3-kinase/métabolisme , Lésions traumatiques du nerf facial/thérapie , Phosphatidylinositol 3-kinases/métabolisme , Bécline-1 , Facteur neurotrophique dérivé des cellules gliales , Transduction du signal , Sérine-thréonine kinases TOR/métabolisme , Autophagie , Mammifères/métabolisme
14.
Article de Chinois | WPRIM | ID: wpr-1006271

RÉSUMÉ

ObjectiveThe antitumor activity of sesquiterpenoid M36 isolated from Myrrha against human hepatoma HepG2 cells was investigated in this study. MethodHepG2 cells were treated with M36 at different concentrations (0, 2, 4, 6, 8, 10 μmol·L-1). Firstly, the effects of M36 on the proliferation of human hepatoma HepG2 cells were detected by methyl thiazolyl tetrazolium (MTT), colony formation assay, and EdU proliferation assay. Hoechst staining, flow cytometry analysis, and Western blot were used to explore the effect of M36 on the apoptosis of human hepatoma HepG2 cells. Acridine orange staining and western blotting were used to examine the effect of M36 on autophagy in HepG2 cells. Finally, Western blot was used to detect protein expression of cancer-related signaling pathways. ResultCompared with the blank group, M36 treatment significantly inhibited the proliferation of human hepatoma HepG2 cells (P<0.01), and the half inhibitory concentration (IC50) value of M36 for 48 h was 5.03 μmol·L-1, in a dose- and time-dependent manner. M36 was also able to induce apoptosis and autophagy in human hepatoma HepG2 cells. After treatment with 8 μmol·L-1 M36 for 48 hours, the apoptosis rate of HepG2 cells was (42.03±9.65)% (P<0.01). Compared with the blank group, HepG2 cells treated with 4 and 8 μmol·L-1 M36 for 48 h had a significant increase in cleaved poly ADP-ribose polymerase (cleaved-PARP) protein levels (P<0.01). Acridine orange staining showed that autophagy was significantly activated in HepG2 cells treated with 4 and 8 μmol·L-1 M36 for 48 h compared with the blank group (P<0.01), which was further verified by the up-regulation of microtubule-associated protein 1 light chain 3 Ⅱ (LC3 Ⅱ). Western blot results showed that compared with the blank group, the levels of phosphorylated extracellular regulated protein kinase (p-ERK), phosphorylated p38 mitogen-activated protein kinase (p-p38 MAPK), phosphorylated c-Jun N-terminal kinase (p-JNK), and its downstream nuclear transcription factors c-Jun and p-c-Jun protein were significantly increased in M36 group (P<0.05, P<0.01). The mechanism may be related to the up-regulation of MAPK signaling pathway. ConclusionThe sesquiterpenoid M36 isolated from Myrrha inhibits the proliferation of human hepatoma HepG2 cells and promotes apoptosis and autophagy, which may be related to the activation of the MAPK signaling pathway.

15.
Journal of Medical Research ; (12): 106-111, 2024.
Article de Chinois | WPRIM | ID: wpr-1023635

RÉSUMÉ

Objective To investigate the effect of inhibiting autophagy induced by endoplasmic reticulum stress(ERS)on necrotiz-ing enterocolitis(NEC)in neonatal rats.Methods First,the NEC model of neonatal rats was established.Then,the intestinal epitheli-al cells were isolated and divided into three groups:control group,inhibition group and induction group.The control group was cultured normally,the inhibition group was added with 4-phenylbutyric acid,and the induction group was added with tunicamycin for 24hours.Enzyme-linked immunosorbent assay(ELISA)was used to detect the expression of the cellular inflammatory cytokines tumor necrosis factor-α(TNF-α)and intestinal fatty acid binding protein(I-FABP)in each group.Real-time quantitative polymerase chain reac-tion(RT-qPCR)was used to detect the mRNA expression level of the markers of ERS glucose regulated protein 78(GRP78)and oxy-gen-regulated protein 150(ORP150).Western blot was used to detect the expression of autophagy related proteins LC3 Ⅱ/Ⅰ and p62.Results Compared with the control group,the expression of p62 in the inhibition group increased significantly,the expression of TNF-α,I-FABP,GRP78,ORP150,LC3 Ⅱ/Ⅰ in the inhibition group was significantly decreased,while the expression of p62 in the induc-tion group was significantly decreased,the expressions of TNF-α,Ⅰ-FABP,GRP78,ORP150,LC3 Ⅱ/Ⅰ were significantly increased,and the differences were statistically significant(P<0.05).Conclusion Inhibition of ERS induced autophagy activation can alleviate intestinal mucosal injury and inflammatory response in neonatal rats with NEC and improve intestinal barrier function.

16.
Herald of Medicine ; (12): 19-25, 2024.
Article de Chinois | WPRIM | ID: wpr-1023673

RÉSUMÉ

Objective To investigate the effects of icariin on high glucose-induced autophagy and apoptosis of podocytes,and the regulating effects on mammalian target of rapamycin(mTOR)/serine-threonine kinase(Akt)/cyclic adenosine monophosphate response element binding protein(CREB)pathway.Methods The mouse podocytes MPC5 were taken and divided into five groups:normal control group(5.5 mmol·L-1 glucose),high glucose group(30 mmol·L-1 glucose),icariin group(30 mmol·L-1glucose+5 μmol·L-1icariin),GDC-0349 group(30 mmol·L-1glucose+50 μmol·L-1 GDC-0349),icariin+GDC-0349 group(30 mmol·L-1 glucose+5 μmol·L-1 icariin+50 μmol·L-1 GDC-0349).Cultured for 48 hours,the tetramethylazozolium salt method was used to detect the viability of MPC5 cells;acridine orange staining was used to observe the autophagy of MPC5 cells;apoptosis of MPC5 cells was detected by flow cytometry;Western blotting was used to detect the expression of autophagy[microtubule associated protein one light chain 3(LC3)II,LC3Ⅰ,autophagy-related protein(Beclin-1)],apoptosis[Bcl-2 related X protein(Bax),B cell lymphoma-2(Bcl-2)]and mTOR/Akt/CREB pathway-related proteins of MPC5 cells.Results Compared with the normal control group,the cell viability,expression levels of Bcl-2,phosphorylated mTOR(p-mTOR)/mTOR,phosphorylated Akt(p-Akt)/Akt,phosphorylated CREB(p-CREB)/CREB protein of MPC5 cells in the high glucose group were significantly decreased(P<0.05),the autophagy ability was enhanced,the autophagosome showed orange fluorescence,and the apoptosis rate,LC3Ⅱ/LC3Ⅰ,Beclin-1,Bax protein expression levels were significantly increased(P<0.05).Compared with the high glucose group,the cell viability,LC3Ⅱ/LC3Ⅰ,Beclin-1,Bcl-2,p-mTOR/mTOR,p-Akt/Akt,p-CREB/CREB protein expression levels of MPC5 cells in icariin group were significantly increased,the autophagy ability was further enhanced,the number of autophagosomes was increased,the autophagosomes showed brick red fluorescence(P<0.05),the apoptosis rate and Bax protein expression level were significantly decreased(P<0.05),and the cell viability,LC3Ⅱ/LC3Ⅰ,Beclin-1,Bcl-2,p-mTOR/mTOR,p-Akt/Akt and p-CREB/CREB proteins expression levels of MPC5 cells in GDC-0349 group were significantly decreased,the autophagy ability was weakened,the number of autophagosomes was reduced,the autophagosomes showed orange fluorescence(P<0.05),and the apoptosis rate and Bax protein expression level were significantly increased(P<0.05);icariin+GDC-0349 could reverse the effect of icariin on high glucose induced MPC5 cells(P<0.05).Conclusion Icariin promotes elevated glucose-induced podocyte autophagy and inhibits apoptosis by activating the mTOR/Akt/CREB pathway.

17.
Herald of Medicine ; (12): 161-166, 2024.
Article de Chinois | WPRIM | ID: wpr-1023693

RÉSUMÉ

Objective To study the protective effect of Wedelolactone(WEL)against inflammatory injury in human umbilical vein endothelial cells(HUVECs)and its molecular mechanism by inducing PI3K/Akt/mTOR.Methods The model of atherosclerosis(AS)oxidative stress injury in HUVECs was induced with 200 μmol·L-1 of hydrogen peroxide for 24 h.The experimental groups were as follows:normal control group,DMSO(dimethyl sulfoxide)group,H2O2 group,and WEL group.MTT was used to measure the cell survival rate of each group;flow cytometry was used to assess intracellular ROS levels;fluorescence microscopy was used to detect the expression of p62 protein;immunoblotting assay was used to determine the protein expression levels for apoptosis-related proteins associated with PI3K/Akt/mTOR signaling pathway and autophagy-related proteins.Results Compared with the H2 O2 group,the HUVEC cell survival rate was significantly inhibited in the WEL group(P<0.05).ROS production was significantly lower,and the protein expressions of SOD1 and p62 were significantly increased in the WEL group as compared to the hydrogen peroxide group.The protein expression of p-mTOR,p-Akt,and p-PI3K was significantly decreased in hydrogen peroxide(P<0.01);In the WEL experiment,p-mTOR,p-Akt,and p-PI3K were increased significantly in the post-injury HUVECs(P<0.01).Conclusion Wedelolactone inhibits HUVECs'autophagy by suppressing H2O2-induced inflammatory damage in HUVECs,which may be related to the fact that WEL promotes the phosphorylation of PI3K,Akt,and mTOR proteins,inhibits autophagy and thus resists oxidative stress damage in HUVECs cells.

18.
Herald of Medicine ; (12): 502-510, 2024.
Article de Chinois | WPRIM | ID: wpr-1023741

RÉSUMÉ

Objective To explore the effect and potential mechanisms of melatonin combined with gemcitabine on the chemosensitivity of human pancreatic cancer cell line PANC-1.Methods Human pancreatic cancer cell line PANC-1 was trea-ted with gemcitabine alone or in combination with melatonin.Cell viability was assessed using CCK-8.Effect of melatonin and gem-citabine alone or in combination on the clonogenic capacity of PANC-1 cells were observed through colony formation experiments.Scratch assays and transwell experiments were conducted to evaluate cell migration ability.Reactive oxygen species(ROS)and mitochondrial membrane point JC-1 assay kit were used to determine reactive oxygen species synthesis and membrane potential levels.Intracellular Fe2+level was measured using ferrous ion fluorescent probe.The protein expression levels of LC3,P62,GPX4 and SLC7A11 in different treatment groups were detected by immunofluorescence and Western blotting.Results CCK-8 results showed that the viability of PANC-1 cells was inhibited by gemcitabine alone after 48 h and 72 h of treatment in a time-and dose-dependent manner.The cell viability of gemcitabine combined with melatonin group was significantly lower than that of gemcitabine group,and the cell viability decreased with the increase of melatonin concentration.Scratch assays,transwell experiments,and plate colony formation assay results demonstrated that the proliferation and migration of cells in the gemcitabine combined with the me-latonin group were significantly inhibited compared with the gemcitabine group.The levels of reactive oxygen species and Fe2+in PANC-1 in gemcitabine combined with the melatonin group were higher than those in the gemcitabine group,and the mitochondri-al membrane potential was significantly decreased(P<0.01).Western blotting and immunofluorescence results showed that the ra-tio of autophagy-related protein LC3-Ⅱ/LC3-Ⅰ in gemcitabine combined with the melatonin group was lower than that in the gem-citabine group,and the expression of P62 was up-regulated,and the expression of anti-iron death-related protein GPX4 and SLC7A11 was significantly inhibited(P<0.05),suggesting that melatonin combined with gemcitabine can inhibit autophagy and promote ferroptosis in PANC-1 cells.Conclusion Melatonin enhances the chemosensitivity of pancreatic cancer cell PANC-1 to gemcitabine by inhibiting autophagy and promoting ferroptosis of tumor cells.

19.
Article de Chinois | WPRIM | ID: wpr-1023860

RÉSUMÉ

Autophagy is an important mechanism to maintain cellular function and metabolism,whereas ab-normal autophagy can cause the advent and worsening of various diseases.N6-Methyladenosine(m6A)RNA methylation is a reversible RNA modification,which is regulated by m6A methyltransferase,m6A demethylase and m6A-binding protein.Studies have shown that autophagy-related genes promote or attenuate autophagy level dependent on the regulation of m6A,and then participate in the process of diseases.This paper reviews the progress of m6A modification regulatory enzymes and their binding proteins in regulating cell autophagy to provide reference for future researches.

20.
Article de Chinois | WPRIM | ID: wpr-1023887

RÉSUMÉ

AIM:To explore the synergistic sensitization effect of human umbilical cord mesenchymal stem cell culture supernatant(hUMSC-CM)combined with temozolomide(TMZ)on various glioma cell lines,and to elucidate the underlying mechanisms.METHODS:The hUMSC-CM was harvested using two different serum deprivation tech-niques at 24 and 48 h,and was converted into freeze-dried powder,which was then given to rat malignant glioma cell line RG-2,human astrocytoma cell line U251 and human glioblastoma cell line LN-428 at 5 concentrations(0,1,3,6 and 9 g/L).The effectiveness and sensitivity of hUMSC-CM for inhibiting growth of glioma cells at 24,48 and 72 h were as-sessed using CCK-8 assay.Hematoxylin-eosin(HE)staining combined with CCK-8 assay was employed to evaluate the chemotherapy sensitivity of glioma cells after 48 h of treatment with TMZ at 6 concentrations(0,25,50,100,200 and 400 μmol/L).Two concentrations(3 and 9 g/L)of hUMSC-CM and 3 concentrations(50,100 and 200 μmol/L)of TMZ were chosen for concurrent treatment of glioma cells to assess the proliferation and pathological alterations.TUNEL staining was utilized to detect apoptosis.Flow cytometry was utilized to analyze cell cycle modifications.The expression alterations of apoptosis-inducing proteins,cleaved caspase-3,cleaved caspase-8 and cleaved PARP1,as well as autophagy-inducing proteins beclin-1 and LC3,were examined using Western blot to investigate the synergistic sensitization mechanism of hUMSC-CM combined with TMZ in vitro.RESULTS:The susceptibility of glioma cell lines to hUMSC-CM and TMZ varied,with RG-2 showing the highest sensitivity,followed by U251,and then LN-428.The inhibitory effect of hUMSC-CM(3 and 9 g/L)and TMZ(50,100 and 200 μmol/L)combined treatment on glioma cells was significantly greater than that that of single-agent treatments(P<0.05),demonstrating a dose-and concentration-dependent enhancement.Notably,the combination of 9 g/L hUMSC-CM(C9)with 50 μmol/L TMZ(T50)effectively suppressed glioma cell growth.CCK-8 as-say indicated a significant reduction of cell viability in C9+T50 group compared with either C9 or T50 alone(P<0.05).HE staining and TUNEL staining revealed pronounced morphological changes and significant apoptotic features in glioma cells treated with C9+T50.Flow cytometric analysis confirmed that C9+T50 induced cell cycle arrest in glioma cells.Fur-thermore,compared with control group,the levels of cleaved caspase-3,cleaved caspase-8,cleaved PARP1,beclin-1,and LC3-Ⅱ/LC3-Ⅰ were significantly elevated in the C9+T50-treated glioma cells(P<0.01).CONCLUSION:(1)The concomitant administration of hUMSC-CM and TMZ exerts a broad inhibitory effect on glioma cells,with a synergistic sen-sitization observed across different cell lines.(2)The enhancement of glioma cell sensitivity to TMZ by hUMSC-CM may be attributed to the modulation of caspase-8/caspase-3/PARP1 signaling pathway and the induction of both apoptosis and autophagy in glioma cells.

SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE