Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 2 de 2
Filtre
Ajouter des filtres








Gamme d'année
1.
Article Dans Chinois | WPRIM | ID: wpr-1032371

Résumé

Objective@#To evaluate the impact of ultra-high-molecular-weight polyethylene (UHMWPE)-Ribbond fibers, when combined with different restorative materials, on fracture resistance and marginal adaptation of isolated primary molar defects, to provide a reference for clinical practice.@*Methods@#This study was approved by the Ethics Review Committee. A total of 72 extracted primary molars with complete crowns were collected, and 66 primary molars were randomly assigned as experimental groups for the fracture resistance and microleakage tests. The molars were divided into six groups (n = 11) based on the type of restorative materials and the application of Ribbond fibers: Group A1, 3M Filtek Z250 + Ribbond; Group A2, 3M Filtek Z250; Group B1, Beautifil II LS + Ribbond; Group B2, Beautifil II LS; Group C1, 3M Filtek Bulk Fill + Ribbond; and Group C2, 3M Filtek Bulk Fill. Groups A1, B1 and C1 received the fiber-reinforcing technique, whereas Groups A2, B2 and C2 received the direct restorative technique; the remainings were in Group D (blank control group), which did not receive treatment for the fracture resistance test. The fracture resistance test was divided into six experimental groups and one blank control group (n = 6). Primary molar teeth in each experimental group were prepared with Class II cavities and filled. The fracture load of all samples was detected, and the fracture mode was analyzed after thermal cycling. The microleakage test was divided into six experimental groups, with five in each group. Class I cavities with a diameter of 3 mm and depth of 2.5 mm were prepared within the mesial and distal marginal ridges on the occlusal surface and filled for primary molars in each group. Marginal microleakage was assessed after thermal cycling.@*Results@#The fracture resistance test results showed that the fracture resistance in groups that received the fiber-reinforcing technique was greater than that in groups that received the direct restorative technique: Group A1>Group A2, Group B1>Group B2, Group C1>Group C2 (P<0.05). The application of Ribbond fibers increased fracture resistance to all tested restorative materials by 37.08% to 39.34%. The proportion of tooth frac-ture decreased significantly in groups A1, C1 compared with A2, C2, with a significant increase in the occurrence rate of “Repairable” (P<0.05). The fracture resistance in Group A1 was significantly greater than that in Group B1 and Group C1 (P<0.05). The marginal microleakage test results showed that the microleakage depth in groups that received the fiber-reinforcing technique was smaller than that in groups that received the direct restorative technique: Group A1<Group A2, Group B1<Group B2, Group C1<Group C2 (P<0.05). The microleakage depth in groups that received the fiber-reinforcing technique decreased by 53.90% to 66.96% compared to that in groups that received the direct restorative technique. The microleakage depth in Group B1 was significantly less than that in Group A1 and Group C1.@*Conclusion@#The application of Ribbond fibers combined with various restorative materials could enhance fracture resistance and diminish the microleakage depth to improve marginal adaptation.

2.
Article Dans Chinois | WPRIM | ID: wpr-875990

Résumé

@#Dental hard tissues lack the ability to self-heal. In dentin and cementum, hydroxyapatite (HA) can exist outside and/or inside collagen fibers. It is difficult to repair or regenerate HA with a highly ordered orientation in the presence of collagen fibers. At present, the biomimetic mineralization of dentin and cementum, mainly carried out by imitating its biological formation process and its physiological structure, can be divided into those originating from the fiber mineralization mechanism and those with HA as the main component. The materials used include natural materials such as demineralized dentin matrix (DDM) and calcined bovine hydroxyapatite (BHA), and synthetic materials such as polymer-induced liquid precursor (PILP) and synthetic HA. In the future, natural materials and synthetic materials should be combined for the restoration and regeneration of dentin and cementum by means of biomimetic mineralization of calcium phosphate released by remineralization solution-HA.

SÉLECTION CITATIONS
Détails de la recherche