Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 2 de 2
Filtrer
Plus de filtres








Gamme d'année
1.
Zhongguo Yi Liao Qi Xie Za Zhi ; (6): 317-320, 2018.
Article de Chinois | WPRIM | ID: wpr-689799

RÉSUMÉ

Multi-angle plane-wave beamforming algorithm is the basis of ultra-fast ultrasonic imaging. It can be used to improve the imaging frame rate and resolution of traditional focused ultrasound. However, the existing multi-angle plane-wave technology can not satisfy the real-time imaging requirements due to the huge amount of computation required by CPU. In this paper, We proposed a parallel processing method to reduce the computation time based on compute unified device architecture(CUDA). Simulation analysis and contrast experiment were conducted to verify its performance. Experimental results show that the execution time based on GPU is much less than that based on CPU, thus the computational speed is accelerated significantly to satisfy the demand of ultrafast imaging.

2.
Journal of Medical Biomechanics ; (6): E460-E464, 2010.
Article de Chinois | WPRIM | ID: wpr-803704

RÉSUMÉ

Objective To build a 2D/3D registration system based on the compute unified device architecture(CUDA) frame with single X-ray image and CT data of knee joints and apply it in the research of knee motion and stability of implanted prosthesis. Method The digital radiography(DR) equipment used in the study was calibrated by the Zhang zhengyou Calibration Method, and then digitally rendered radiographs(DRR) images were generated in the CUDA frame with light tracing algorithm, and the best 2D/3D registration parameters were calculated with a similarity operator of cross correlation; finally, the results were evaluated by using the method of 3D/3D registration with data obtained from a 3D laser scanner. Results With knee specimen X-ray images and CT data, in 6 degrees of freedom, the average errors of transform were below 1 mm, and those of rotation were below 1°. Conclusions The 2D/3D registration system can meet the precision requirement of motion detection and be used to study the knee motion and prosthesis location.

SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE