Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 3 de 3
Filtrer
Plus de filtres








Gamme d'année
2.
Rev. colomb. cir ; 38(3): 439-446, Mayo 8, 2023. fig, tab
Article de Espagnol | LILACS | ID: biblio-1438420

RÉSUMÉ

Introducción. Debido a la ausencia de modelos predictivos estadísticamente significativos enfocados a las complicaciones postoperatorias en el manejo quirúrgico del neumotórax, desarrollamos un modelo, utilizando redes neurales, que identifica las variables independientes y su importancia para reducir la incidencia de complicaciones. Métodos. Se realizó un estudio retrospectivo en un centro asistencial, donde se incluyeron 106 pacientes que requirieron manejo quirúrgico de neumotórax. Todos fueron operados por el mismo cirujano. Se desarrolló una red neural artificial para manejo de datos con muestras limitadas; se optimizaron los datos y cada algoritmo fue evaluado de forma independiente y mediante validación cruzada, para obtener el menor error posible y la mayor precisión con el menor tiempo de respuesta. Resultados. Las variables de mayor importancia según su peso en el sistema de decisión de la red neural (área bajo la curva 0,991) fueron el abordaje por toracoscopia video asistida (OR 1,131), el uso de pleurodesis con talco (OR 0,994) y el uso de autosuturas (OR 0,792; p<0,05). Discusión. En nuestro estudio, los principales predictores independientes asociados a mayor riesgo de complicaciones fueron el neumotórax de etiología secundaria y el neumotórax recurrente. Adicionalmente, confirmamos que las variables asociadas a reducción de riesgo de complicaciones postoperatorias tuvieron significancia estadística. Conclusión. Identificamos la toracoscopia video asistida, el uso de autosuturas y la pleurodesis con talco como posibles variables asociadas a menor riesgo de complicaciones. Se plantea la posibilidad de desarrollar una herramienta que facilite y apoye la toma de decisiones, por lo cual es necesaria la validación externa en estudios prospectivos


Introduction. Due to the absence of statistically significant predictive models focused on postoperative complications in the surgical management of pneumothorax, we developed a model using neural networks that identify the independent variables and their importance in reducing the incidence of postoperative complications. Methods. A retrospective single-center study was carried out, where 106 patients who required surgical management of pneumothorax were included. All patients were operated by the same surgeon. An artificial neural network was developed to manage data with limited samples. The data is optimized and each algorithm is evaluated independently and through cross-validation to obtain the lowest possible error and the highest precision with the shortest response time. Results. The most important variables according to their weight in the decision system of the neural network (AUC 0.991) were the approach via video-assisted thoracoscopy (OR 1.131), use of pleurodesis with powder talcum (OR 0.994) and use of autosutures (OR 0.792, p<0.05). Discussion. In our study, the main independent predictors associated with a higher risk of complications are pneumothorax of secondary etiology and recurrent pneumothorax. Additionally, we confirm that the variables associated with a reduction in the risk of postoperative complications have statistical significance. Conclusion. We identify video-assisted thoracoscopy, use of autosuture and powder talcum pleurodesis as possible variables associated with a lower risk of complications and raise the possibility of developing a tool that facilitates and supports decision-making, for which external validation in prospective studies is necessary


Sujet(s)
Humains , Pneumothorax , Intelligence artificielle , 29935 , Complications postopératoires , Talc , Thoracoscopie
3.
Cad. Saúde Pública (Online) ; 36(8): e00038319, 2020. tab, graf
Article de Portugais | LILACS | ID: biblio-1124320

RÉSUMÉ

Resumo: O objetivo foi aplicar as redes neurais artificiais para classificar os municípios do Estado do Rio Grande do Norte, Brasil, de acordo com sua vulnerabilidade social. Estudo ecológico que utilizou 17 variáveis que refletissem os indicadores epidemiológicos, demográficos, socioeconômicos e educacionais para o ano de 2010. As fontes pesquisadas foram o Atlas do Desenvolvimento Humano no Brasil e o Instituto Brasileiro de Geografia e Estatística. Para a classificação dos municípios, foram aplicadas as redes neurais artificiais, dos tipos PNN e Multilayer feedforward, resultando a classificação em cinco categorias de vulnerabilidade: muito alta, alta, média, baixa e muito baixa. A fase de treinamento das redes utilizou os valores de mínimo, máximo, percentis 25 e 75 e mediana das 17 variáveis selecionadas. A rede Multilayer feedforward com seis nós apresentou os melhores resultados. Os municípios da região metropolitana (Natal, Parnamirim), das microrregiões do Seridó oriental e ocidental (Caicó, Currais Novos, São José do Seridó, Jardim do Seridó, Parelhas, Carnaúba dos Dantas) apresentaram níveis mais baixos de vulnerabilidade. Os municípios de alta e muito alta vulnerabilidade encontram-se na mesorregião do Leste potiguar: nas microrregiões do Litoral Nordeste (municípios de João Câmara, Touros, Caiçara do Rio dos Ventos) e do Litoral Sul (Nísia Floresta, São José do Mipibu, Arês, Canguaretama). A rede neural classificou os municípios com elevada precisão, destacando os que possuem extrema vulnerabilidade daqueles que detêm os melhores indicadores sociais.


Abstract: The objective was to apply artificial neural networks to classify municipalities (counties) in Rio Grande do Norte State, Brazil, according to their social vulnerability. This was an ecological study using 17 variables that reflected epidemiological, demographic, socioeconomic, and educational indicators for the year 2010. The sources were the Human Development Atlas for Brazil and the Brazilian Institute of Geography and Statistics. For classification of the municipalities, the study applied the artificial neural networks of the PNN and Multilayer feedforward types, resulting in a classification in five categories of vulnerability: very high, high, medium, low, and very low. The networks' training phase used the minimum and maximum values, 25th and 75th percentiles, and medians for the 17 selected variables. The Multilayer feedforward network with six nodes showed the best results. The municipalities from the Metropolitan Area (Natal, Parnamirim) and the eastern and western Seridó micro-regions (Caicó, Currais Novos, São José do Seridó, Jardim do Seridó, Parelhas, Carnaúba dos Dantas) showed the lowest levels of vulnerability. The municipalities with high and very high vulnerability were located in the East of the state, in the micro-regions of the Northeast Coast (João Câmara, Touros, Caiçara do Rio dos Ventos) and Southern Coast (Nísia Floresta, São José do Mipibu, Arês, Canguaretama). The neural network classified the municipalities with high precision, distinguishing those with extreme vulnerability from those with better social indicators.


Resumen: El objetivo fue aplicar las redes neuronales artificiales para clasificar los municipios del estado de Rio Grande do Norte, Brasil, de acuerdo con su vulnerabilidad social. Se realizó un estudio ecológico que utilizó 17 variables que reflejaron los indicadores epidemiológicos, demográficos, socioeconómicos y educacionales durante el año 2010. Las fuentes investigadas fueron: el Atlas de Desarrollo Humano en Brasil y el Instituto Brasileño de Geografía y Estadística. Para la clasificación de los municipios, se aplicaron las redes neuronales artificiales de los tipos PNN y Multilayer feedforward, resultando la clasificación en cinco categorías de vulnerabilidad: muy alta, alta, media, baja y muy baja. La fase de entrenamiento de las redes utilizó los valores: mínimo, máximo, percentiles 25 y 75 y mediana de las 17 variables seleccionadas. La red Multilayer feedforward con seis nudos presentó los mejores resultados. Los municipios de la región metropolitana (Natal, Parnamirim), de las microrregiones del Seridó oriental y ocidental (Caicó, Currais Novos, São José do Seridó, Jardim do Seridó, Parelhas, Carnaúba dos Dantas) presentaron niveles más bajos de vulnerabilidad. Los municipios de alta y muy alta vulnerabilidad se encuentran en la mesorregión del este potiguar: en las microrregiones del litoral nordeste (municipios de João Câmara, Touros, Caiçara do Rio dos Ventos) y del litoral sur (Nísia Floresta, São José do Mipibu, Arês, Canguaretama). La red neuronal clasificó los municipios con elevada precisión, destacando los que poseen extrema vulnerabilidad de aquellos que ostentan los mejores indicadores sociales.


Sujet(s)
Humains , 29935 , Environnement , Brésil , Villes , Géographie
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE