Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 5 de 5
Filtrer
Plus de filtres








Gamme d'année
1.
Article de Chinois | WPRIM | ID: wpr-1015808

RÉSUMÉ

Cre-loxP is an efficient recombination system originated from P1 phage. Its specific recombination patterns based on the locus of X-over P1 make it one of the most commonly used tools for gene editing in recent years. This paper focuses on the practical application of Cre-loxP system. Firstly, the functions and advantages of CRISPR/Cas9 system in Cre sequence insertion and loxP sequence insertion are analyzed. Then, a series of practical application problems of Cre-loxP system are described. For example, in this paper, the selection of Cre recombinase sequence in situ and safe site, the strategy of loxP sequence insertion, the identification of Cre recombinase tag protein, fluorescence identification of "ectopic" expression, primer design of PCR identification and reproductive strategy of mouse were described. At the same time, the optimization of Cre-loxP system in conditional gene knockout is introduced, such as ligand-induced Cre, promoter activated Cre, photo-induced Cre and activity modification of Cre. Through these optimized applications, we can obtain time-controlled conditional gene knockout, regulate the activity of Cre recombinase, and even avoid the toxicity of Cre recombinase itself. Finally, this paper discusses the defects and challenges of Cre-loxP system, and looks into the future development direction of Cre-loxP system. In summary, this paper reviews the practical application of gene knockout based on Cre-loxP system, summarizes the latest research progress and optimization strategies of Cre-loxP system, and prospects the future gene editing based on Cre-loxP system. This paper aims to provide theoretical guidance for solving practical operation problems based on Cre-loxP system, and to provide new research ideas for more accurate, more controllable and more adaptive gene editing in the future.

2.
Article de Chinois | WPRIM | ID: wpr-909474

RÉSUMÉ

Objective:To study the effect of senescence gene silent information regulator 6 (Sirt6) knockout on the brain of aged mice.Methods:Sirt6-flox transgenic mice were constructed, and the mouse brain tissue was specifically knocked out by Emx1-Cre tool mice.According to genotyping, 11 wild-type mice were selected as control group(WT group) and 10 Sirt6 gene konckout mice were selected as conditional knockout group(cKO group). Body size and body weight of the aged mice were measured and cerebral cortex thickness was measured by HE staining.Brain neurogenesis was analyzed with EdU markers.The expression of RNA-binding protein HuR and apoptosis-related protein Caspase-3 were detected by Western blot.Meanwhile, histone acetylation levels in the cortex were detected.Results:Sirt6 brain tissue-specific knocked out mice were successfully constructed.Compared with the brain tissue area((2.07±0.22) cm 2)and cortical thickness ((970.56±80.91) μm) of WT mice in the 12-month-old group, the brain tissue area ((1.61±0.14)cm 2) and cortical thickness ((822.88±53.94) μm) in Sirt6 cKO group were smaller, and the differences were statistically significant (both P<0.05). EdU incorporation into nerve cells showed that the number of EdU incorporation into periventricular nerve cells in cKO group was lower ((4.75±1.48)) than that in WT group ((10.29±1.93)). The difference was statistically significant ( P<0.001). In the experiment of 17 months age group, mice in cKO group were smaller in body size, lower in body weight ((29.00±1.08) g) and smaller in brain area ((1.54±0.55)cm 2)compared with WT group in body size, body weight ((35.25±4.17) g) and brain tissue area ((1.98±0.18) cm 2)(both P<0.05). The expression of Caspase-3 and HuR in cortical proteins of these two age groups decreased( t=2.95, 5.38, both P<0.05), and the expression of H3K9ac and H3K56ac increased( t=3.53, 2.78, both P<0.05), but the expression of Sirt1 homologous gene remained unchanged( t=1.26, P>0.05). Conclusion:The specific deletion of Sirt6 in brain tissue can lead to the decrease of brain neurogenesis in aged mice, and the aggravation of aging and the increase of apoptosis, which may be the reason for the thinning of cerebral cortex and brain tissue atrophy.The molecular mechanism is speculated to be related to the increase of acetylation level after Sirt6 knockout

3.
Chinese Journal of Neuromedicine ; (12): 433-439, 2021.
Article de Chinois | WPRIM | ID: wpr-1035425

RÉSUMÉ

Objective:To investigate the changes of brain energy metabolism and cognitive function in mice with specifically knocking out AMP-activated protein kinase α1 subunit ( AMPKα1) gene in the excitatory neurons by Cre-loxP recombination system. Methods:Sixteen 6-month-old mice with genotype AMPKα1 flox/flox/Camk2a-Cre/ERT2 obtained by hybrid breeding were randomly divided into AMPKα1 knockout group ( n=8) and AMPKα1 wild-type group ( n=8). Mice in the AMPKα1 knockout group were intraperitoneally injected 0.1 mL tamoxifen (20 mg/mL, dissolved in corn oil) daily for a consecutive 5 d to control AMPKα1 gene knockout in the excitatory neurons; and mice in the AMPKα1 wild-type group were intraperitoneally injected 0.1 mL corn oil daily for a consecutive 5 d. Seven d after that, Morris water maze and T maze experiments were employed to detect the spatial learning and memory abilities and spatial working memory of these mice; chemical exchange saturation transfer imaging (CEST) was used to observe the glucose metabolism in the hippocampus and cortex surrounding the hippocampus; Western blotting was used to detect the AMPKα1 and glutamate receptor 1 (GluR1) protein expressions in the hippocampus and cortex surrounding hippocampus of two groups. Results:(1) Morris water maze showed that, as compared with those in the AMPKα1 wild-type group, mice in the AMPKα1 knockout group had significantly prolonged escape latency ([13.90±3.72] s vs. [22.40±6.28] s; [11.95±3.86] s vs. [22.39±9.77] s]) on the 3 rd and 4 th d of experiment, statistically decreased times crossing the platform ([5.25±1.83] times vs. [1.75±1.28] times, P<0.05). (2) T-maze experiment showed that as compared with that of the AMPKα1 wild-type group, the free alternation rate in mice of the AMPKα1 knockout group was significantly decreased ([73.21±9.16]% vs. [48.21±11.29]%, P<0.05). (3) CEST showed that the glucose metabolism levels in the hippocampus and cortex surrounding the hippocampus of AMPKα1 knockout group were significantly lower than those in AMPKα1 wild-type group (1.51±0.81 vs. 2.77±0.67; 1.31±0.83 vs. 2.42±0.95, P<0.05). (4) Western blotting showed that the AMPKα1 and GluR1 protein expressions in the hippocampus and cortex surrounding the hippocampus of the AMPKα1 wild-type group were significantly higher than those of the AMPKα1 knockout group (AMPKα1: 0.70±0.05 vs. 0.49±0.03, 0.98±0.04 vs. 0.64±0.06; GluR1: 1.22±0.18 vs. 0.60±0.11, 0.96±0.08 vs. 0.79±0.04, P<0.05). Conclusion:Specifically knocking out AMPKα1 in excitatory neurons can result in abnormal glucose metabolism in the brain of mice, and thus cause cognitive dysfunction, whose mechanism may be related to excitatory synaptic disorder caused by energy metabolism disorder.

4.
Chinese Journal of Burns ; (6): 740-745, 2019.
Article de Chinois | WPRIM | ID: wpr-796814

RÉSUMÉ

Objective@#To construct and identify a mouse model with conditional knockout (cKO) of p75 neurotrophin receptor (p75NTR-cKO) gene in epidermis cells by Cre-loxP system.@*Methods@#Five p75NTRflox/flox transgenic C57BL/6J mice (aged 6-8 weeks, male and female unlimited, the age and sex of mice used for reproduction were the same below) and five keratin 14 promotor-driven (KRT14-) Cre+ /- transgenic C57BL/6J mice were bred and hybridized via Cre-loxP system. Five p75NTRflox/+ ·KRT14-Cre+ /- mice selected from the first generation of mice were mated with five p75NTRflox/flox mice to obtain the second generation hybrids. After the second generation mice were born 20-25 days, the parts of the mice tail were cut off to identify the genotype by polymerase chain reaction method. Four p75NTR gene complete cKO mice (6 weeks old) and 4 wild-type mice (6 weeks old) were selected and sacrificed respectively. The abdominal skin tissue and brain tissue were excised to observe the expression of p75NTR in the two tissue of two types of mice by immunohistochemical staining. The abdominal skin tissue of two types of mice was obtained to observe the histomorphological changes by hematoxylin and eosin staining.@*Results@#(1) Twenty second generation mice were bred. The genotype of 4 mice was p75NTRflox/flox·KRT14-Cre+ /-(p75NTR-/-), i. e. p75NTR gene complete cKO mice; the genotype of 5 mice was p75NTRflox/+ ·KRT14-Cre+ /-, i. e. p75NTR gene partial cKO mice; the genotype of 5 mice was p75NTRflox/flox·KRT14-Cre-/-, and that of 6 mice was p75NTRflox/+ ·KRT14-Cre-/-, all of which were wild-type mice. (2) The expression of p75NTR was negative in skin epidermis tissue of p75NTR gene complete cKO mice, while numerous p75NTR positive expression was observed in skin epidermis tissue of wild-type mice. Abundant p75NTR positive expression was observed in brain tissue of both wild-type mice and p75NTR gene complete cKO mice. (3) There was no abnormal growth of skin epidermis tissue in both wild-type mice and p75NTR gene complete cKO mice, with intact hair follicle structure.@*Conclusions@#Applying Cre-loxP system can successfully construct a p75NTR-cKO mice model in epidermis cells without obvious changes in skin histomorphology.

5.
Article de Chinois | WPRIM | ID: wpr-563075

RÉSUMÉ

Objective To obtain differentiated osteoblast-specific inactivation of fgfr1 mice Methods To obtain fgfr1△/+/OC-CreTG/+ mice,fgfr1flox/flox mice obtained from NIH were crossed with OC-Cre mice To obtain fgfr1△/△/OC-CreTG/+ mutant mice,fgfr1△/+/OC-CreTG/+ further crossed with themselves or fgfr1flox/flox mice After fgfr1△/△/OC-CreTG/+ crossed with fgfr1flox/flox mice,half of their offspring were mutant mice Results Differentiated osteoblast-specific fgfr1 knockout mice were obtained Conclusion fgfr1△/△/OC-CreTG/+ mice were obtained through proper crossing strategy,which provides a suitable platform for studying fgfr1 function in bone development and fracture healing

SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE