Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 8 de 8
Filtre
Ajouter des filtres








Gamme d'année
1.
Chinese Journal of Biotechnology ; (12): 4219-4233, 2023.
Article Dans Chinois | WPRIM | ID: wpr-1008022

Résumé

This study aimed to explore the expression changes of VASA gene in sheep testis development and to construct VASA gene knock-in vector to prepare for the study on the differentiation of sheep germ cells in vitro. The testicular tissues of 3-month-old (3M) and 9-month-old (9M) sheep which represent immature and mature stages, respectively, were collected. The differential expression of VASA gene was analyzed by quantitative real-time PCR (qPCR) and Western blotting, and the location of VASA gene was detected by immunohistochemistry. The sgRNA targeting the VASA gene was designed and homologous recombination vectors were constructed by PCR. Subsequently, plasmids were transferred into sheep ear fibroblasts. The VASA gene was activated in combination with CRISPR/dCas9 technology to further verify the efficiency of the vector. The results showed that the expression level of VASA gene increased significantly with the development of sheep testis (P < 0.01), and was mainly located in spermatocytes and round spermatids. The knock-in vector of VASA gene was constructed by CRISPR/Cas9 system, and the Cas9-gRNA vector and pEGFP-PGK puro-VASA vector were transfected into ear fibroblasts. After CRISPR/dCas9 system was activated, ear fibroblasts successfully expressed VASA gene. The results suggest that VASA gene plays a potential function in sheep testicular development and spermatogenesis, and the VASA gene knock-in vector can be constructed in vitro through the CRISPR/Cas9 system. Our results provided effective research tools for further research of germ cell development and differentiation.


Sujets)
Mâle , Animaux , Ovis/génétique , Systèmes CRISPR-Cas/génétique , Techniques de knock-in de gènes , , Plasmides , Cellules germinales
2.
Chinese Journal of Biotechnology ; (12): 3738-3746, 2023.
Article Dans Chinois | WPRIM | ID: wpr-1007989

Résumé

Current studies have shown that centromere protein F (CENPF) was overexpressed in hepatocellular carcinoma (HCC) and might be involved in the pathogenesis of HCC. Specifically, due to the very large molecular weight (358 kDa) of CENPF full length protein, only CENPF knock-down, but not overexpression models, were applied currently to explore the carcinogenicity of CENPF in HCC. Whether CENPF overexpression is a cause or an effect in HCC remains to be illustrated. We aimed to establish a CENPF overexpression cell model using CRISPR/dCas9 synergistic activation mediator (SAM) system with lentiMPHv2 and lentiSAMv2 vectors to explore the role of CENPF overexpression in HCC. Single guide RNAs (sgRNAs) that specifically identify the transcription initiation site of CENPF gene were synthesized and inserted into the lentiSAMv2 plasmid. Huh-7 and HCCLM3 cells were first transduced with lentiMPHv2 and then selected with hygromycin B. The cells were then transduced with lentiSAMv2 carrying specific sgRNA for CENPF gene, followed by blasticidin S selection. The mRNA and protein detection results of Huh-7 and HCCLM3 cells screened by hygromycin B and blasticidin S showed that the endogenous overexpression of CENPF can be induced by sgRNA1 and sgRNA4, especially by sgRNA4. By using the CRISPR/dCas9 technique, stable cell models with overexpressed CENPF were successfully constructed to explore the role of CENPF in tumorigenesis, which provides a reference for the construction of cell models overexpressing large molecular weight protein.


Sujets)
Humains , Carcinome hépatocellulaire/génétique , Tumeurs du foie/génétique , , Clustered regularly interspaced short palindromic repeats , Hygromycine
3.
Chinese Journal of Biotechnology ; (12): 772-779, 2022.
Article Dans Chinois | WPRIM | ID: wpr-927743

Résumé

Gluconacetobacter xylinus is a primary strain producing bacterial cellulose (BC). In G. xylinus, BcsD is a subunit of cellulose synthase and is participated in the assembly process of BC. A series of G. xylinus with different expression levels of the bcsD gene were obtained by using the CRISPR/dCas9 technique. Analysis of the structural characteristics of BC showed that the crystallinity and porosity of BC changed with the expression of bcsD. The porosity varied from 59.95%-84.05%, and the crystallinity varied from 74.26%-93.75%, while the yield of BC did not decrease significantly upon changing the expression levels of bcsD. The results showed that the porosity of bacterial cellulose significantly increased, while the crystallinity was positively correlated with the expression of bcsD, when the expression level of bcsD was below 55.34%. By altering the expression level of the bcsD gene, obtaining BC with different structures but stable yield through a one-step fermentation of G. xylinus was achieved.


Sujets)
Cellulose/composition chimique , Clustered regularly interspaced short palindromic repeats , Fermentation , Gluconacetobacter xylinus/métabolisme
4.
Chinese Journal of Biotechnology ; (12): 3061-3070, 2021.
Article Dans Chinois | WPRIM | ID: wpr-921406

Résumé

The study of distinct genes, chromosomes and the spatio-temporal relationships between them is of great significance in genetics, developmental biology and biomedicine. CRISPR/Cas9 has become the most widely used gene editing tool due to its excellent targeting ability. Recently, researchers have developed a series of advanced live cell imaging techniques based on the nuclease-inactivated mutant of Cas9 (dCas9), providing rapid and convenient tools for high-resolution imaging of specific sites in the chromatin and genome. This review summarizes the advances of CRISPR/dCas9 system in live cell imaging from three aspects, including the strategies of cell delivery, optimization of the fluorescence signals, as well as orthogonal and multicolor imaging. Furthermore, we shed light on the development trends and prospects of this field.


Sujets)
Systèmes CRISPR-Cas/génétique , Chromatine , Endonucleases , Édition de gène
5.
Chinese Journal of Tissue Engineering Research ; (53): 1056-1063, 2020.
Article Dans Chinois | WPRIM | ID: wpr-847766

Résumé

BACKGROUND: Islet cell transplantation is one of the most effective methods to treat diabetes. However, the shortage of transplanted cells has limited its clinical application. Direct reprogramming of hepatocytes to islet β cells in vitro is a new idea to solve this problem, but differentiation of hepatocytes to islet β cells is a complicated process. OBJECTIVE: Direct reprogramming hepatocytes into islet-like cells by efficient targeting and activating the endogenous genes of hepatocytes with Casilio system (constructed CRISPR/ Cas9-Pumilio system) through modifying guide RNA sequence combined with the transcriptional activator PUFa-P65-HSF1. METHODS: The endogenous PNM (Pdx1, Ngn3, MafA) genes of hepatocytes were targeted and activated by using the Casilio system, which was transfected to the HEK293T cell line by liposome transfection. The expression of endogenous PNM was detected by real-time fluorescence quantitative PCR and immunofluorescence. The Ins-EGFP cell line with stable expression of enhanced green fluorescent protein was constructed by the lentivirus carrying Ins-promoter-EGFP. The Ins-EGFP-HepG2-Cas9-PUFa-p65-HSF1 cell line (referred to as stable translocated cell lines) with stable expression of dCas9 and PUFa-P65-HSF1 in Ins-EGFP-HepG2 cell line was constructed by the PiggyBac(PB) transposon system. By using liposome, the gRNAs were transfected to stable translocated cell line, and the expression level of endogenous gene PNM was detected by real-time fluorescence quantitative PCR and immunofluorescence. Simultaneously, reprogramming efficiency was observed. RESULTS AND CONCLUSION: (1) The activation of endogenous genes by Casilio system was verified in 293T cell line. (2) The expression of EGFP, dCas9 and PUFa-P65-HSF1 in stable cell line was detected by RT-PCR, western blot assay and immunofluorescence. (3) The real-time fluorescence quantitative PCR results confirmed that this new Casilio system could target and activate the PNM which led to the up-regulation of the endogenous PNM gene expression. The efficiency of direct reprogramming was 10%-15%. (4) Based on CRISPR/dCas9, the new Casilio system can efficiently activate the endogenous PNM gene in hepatocytes, enabling the hepatocyte line to be directly reprogrammed as islet-like cells.

6.
Chinese Journal of Biotechnology ; (12): 2113-2125, 2020.
Article Dans Chinois | WPRIM | ID: wpr-878471

Résumé

Glutamic acid is an important amino acid with wide range of applications and huge market demand. Therefore, by performing transcriptome sequencing and re-sequencing analysis on Corynebacterium glutamicum E01 and high glutamate-producing strain C. glutamicum G01, we identified and selected genes with significant differences in transcription and gene levels in the central metabolic pathway that may have greatly influenced glutamate synthesis and further increased glutamic acid yield. The oxaloacetate node and α-ketoglutarate node play an important role in glutamate synthesis. The oxaloacetate node and α-ketoglutarate node were studied to explore effect on glutamate production. Based on the integrated strain constructed from the above experimental results, the growth rate in a 5-L fermenter was slightly lower than that of the original strain, but the glutamic acid yield after 48 h reached (136.1±5.53) g/L, higher than the original strain (93.53±4.52) g/L, an increase by 45.5%; sugar-acid conversion rate reached 58.9%, an increase of 13.7% compared to 45.2% of the original strain. The application of the above experimental strategy improved the glutamic acid yield and the sugar-acid conversion rate, and provided a theoretical basis for the metabolic engineering of Corynebacterium glutamicum.


Sujets)
Cycle citrique , Corynebacterium glutamicum/métabolisme , Acide glutamique/métabolisme , Génie métabolique , Voies et réseaux métaboliques/génétique
7.
Genomics, Proteomics & Bioinformatics ; (4): 119-128, 2019.
Article Dans Anglais | WPRIM | ID: wpr-772961

Résumé

Chromatin conformation, localization, and dynamics are crucial regulators of cellular behaviors. Although fluorescence in situ hybridization-based techniques have been widely utilized for investigating chromatin architectures in healthy and diseased states, the requirement for cell fixation precludes the comprehensive dynamic analysis necessary to fully understand chromatin activities. This has spurred the development and application of a variety of imaging methodologies for visualizing single chromosomal loci in the native cellular context. In this review, we describe currently-available approaches for imaging single genomic loci in cells, with special focus on clustered regularly interspaced short palindromic repeats (CRISPR)-based imaging approaches. In addition, we discuss some of the challenges that limit the application of CRISPR-based genomic imaging approaches, and potential solutions to address these challenges. We anticipate that, with continued refinement of CRISPR-based imaging techniques, significant understanding can be gained to help decipher chromatin activities and their relevance to cellular physiology and pathogenesis.


Sujets)
Systèmes CRISPR-Cas , Génétique , Clustered regularly interspaced short palindromic repeats , Génétique , Locus génétiques , Génomique , Imagerie moléculaire , Méthodes , Nanoparticules , Chimie
8.
Journal of International Pharmaceutical Research ; (6): 215-219, 2017.
Article Dans Chinois | WPRIM | ID: wpr-510954

Résumé

Cas9 is a RNA-guided double stranded DNA nuclease that participates in the CRISPR/Cas9 system. Wide-type Cas9 directly silences the expression of target gene by gene splicing. The engineered dCas9 protein with the mutation at D10A and H840A lacks the Cas9' s endonuclease function but keeps its DNA binding activity. dCas9 can activate special genes by fusing with transcription activator. Meanwhile,it can inhibit the gene transcription by directly binding to the target gene and stop gene transcrip?tion. Combination of light sensitive structures and CRISPR can produce light-inducible CRISPR/Cas9 system for control of gene expres?sion. This system is able to activate or inhibit gene expression via the use of controlling blue light(470 nm). In this review,we mainly discuss the development of the light inducible CRISPR/Cas9 system as well as its application in the control of gene expression.

SÉLECTION CITATIONS
Détails de la recherche