Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 663
Filtre
1.
Chinese Pharmacological Bulletin ; (12): 415-420, 2024.
Article Dans Chinois | WPRIM | ID: wpr-1013650

Résumé

During the treatment of non-small cell lung cancer ( NSCLC) , many patients have developed drug resistance due to the use of targeted EGFR inhibitors. The main reasons for drug resistance are EGFR site mutations and bypass activation. Activation of ALK pathway is one of the major types of bypass activation. A recent authoritative study indicates that ALK is closely related to immunotherapy. This article reviews the treatment of ALK in tumors from three aspects: the structure and physiological function of ALK, the small molecule inhibitor of ALK, the biological function of ALK and its related treatment methods for NSCLC, and prospects future directions for better application of ALK in the treatment of NSCLC.

2.
Neuroscience Bulletin ; (6): 241-254, 2024.
Article Dans Anglais | WPRIM | ID: wpr-1010671

Résumé

The accumulation and spread of prion-like proteins is a key feature of neurodegenerative diseases (NDs) such as Alzheimer's disease, Parkinson's disease, or Amyotrophic Lateral Sclerosis. In a process known as 'seeding', prion-like proteins such as amyloid beta, microtubule-associated protein tau, α-synuclein, silence superoxide dismutase 1, or transactive response DNA-binding protein 43 kDa, propagate their misfolded conformations by transforming their respective soluble monomers into fibrils. Cellular and molecular evidence of prion-like propagation in NDs, the clinical relevance of their 'seeding' capacities, and their levels of contribution towards disease progression have been intensively studied over recent years. This review unpacks the cyclic prion-like propagation in cells including factors of aggregate internalization, endo-lysosomal leaking, aggregate degradation, and secretion. Debates on the importance of the role of prion-like protein aggregates in NDs, whether causal or consequent, are also discussed. Applications lead to a greater understanding of ND pathogenesis and increased potential for therapeutic strategies.


Sujets)
Humains , Prions , Maladies neurodégénératives/anatomopathologie , Peptides bêta-amyloïdes , Maladie d'Alzheimer , alpha-Synucléine , Protéines tau , Maladie de Parkinson
3.
Con-ciencia (La Paz) ; 11(1)jun. 2023.
Article Dans Espagnol | LILACS | ID: biblio-1448049

Résumé

Introducción: Las cianobacterias son microrganismos fotosintéticos, con capacidad de sintetizar una gran diversidad de metabolitos secundarios de interés para la industria, pero también han llamado la atención en las últimas décadas las toxinas denominas cianotoxinas, metabolitos que causan distintas alternaciones fisiológicas hasta llegar ocasionar la muerte de diferentes especies. Metodología: La determinación del estado de arte para el tema de cianobacterias se basó en una búsqueda bibliográfica en la base de datos especializada como Elservier, Springer, Google académico y MDPI basadas en palabras clave en español e inglés "microcistinas", "degradación de MC" y "cuantificación y detección de MC". Resultados: En la presente revisión considera dos áreas de caracterización de la microcistinas (MCs) las propiedades fisicoquímicas y propiedades biológicas, para entender su comportamiento e importancia tóxica en los sembradíos agrícolas y en la salud humana. Además de comprender alternativas para su degradación, por métodos fisicoquímicos como fotocatálisis y la gradación biológica por bacterias. Finalmente se mencionará algunos métodos actuales y en desarrollo, para la detección y cuantificación de estas MCs en ambientes acuáticos. Conclusiones: Las MCs tienen el potencial contaminar fuentes de agua como ríos y lagunas, causando daños a la salud humana y a las plantas agrícolas, tienen la capacidad de tolerar distintos cambios drásticos en factores fisicoquímicos y biológicos. Entre las alternativas reportadas la degradación bacteriana promete ser la más confiable. Finalmente, entre los distintos métodos para la detección de MCs, entre los métodos más aplicados son los inmunoensayos, debido a su versatilidad y estabilidad del método.


Introduction: Cyanobacteria are photosynthetic microorganisms, with the capacity to synthesize a great diversity of secondary metabolites of interest to the industry, but toxins called cyanotoxins have also attracted attention in recent decades, metabolites that cause different physiological alterations until they cause the death of different species. Methodology: The determination of the state of the art for the subject of cyanobacteria was based on a bibliographic search in specialized databases such as Elservier, Springer, Google Scholar and MDPI based on keywords in Spanish and English "microcystins", "MC degradation " and "quantification and detection of MC". Results: In the present review, two areas of characterization of microcystins are considered: the physicochemical properties and biological properties of microcystins (MC), to understand their behavior and toxic importance in agricultural crops and in human health.In addition to understanding alternatives for their degradation, by physicochemical methods such as photocatalysis and biological grading by bacteria.Finally, some current and developing methods will be mentioned for the detection and quantification of these MCs in aquatic environments. Conclusions: MCs have the potential to contaminate water sources such as rivers and lagoon, causing damage to human health and agricultural plants, they have the ability to tolerate different drastic changes in physicochemical and biological factors. Among the reported alternatives, bacterial degradation promises to be the most reliable. Finally, among the different methods for the detection of MCs, among the most applied methods are immunoassays, due to their versatility and stability of the method.


Sujets)
Microcystines
4.
Chinese Pharmacological Bulletin ; (12): 1891-1899, 2023.
Article Dans Chinois | WPRIM | ID: wpr-1013693

Résumé

Aim To investigate the effect of nitidine chloride (NC) on the apoptosis of cervical cancer cells and its mechanism. Methods Cervical cancer cell lines HeLa and SiHa were selected as subjects. The cytotoxicity of NC and its inhibitory effect on cell growth were detected by CCK-8 assay and clone formation assay. The effect of NC on the apoptosis of cervical cancer cells was detected by TUNEL assay, and the expression of apoptosis-related proteins was detected by Western blot. The effects of NC on the interaction between p53 and E6AP protein, the level of p53 ubiquitination modification and the stability of p53 protein in cervical cancer cells were analyzed by immunoprecipi-tation assay, ubiquitination assay and Western blot assay. Results NC could significantly inhibit the proliferation and induce apoptosis of cervical cancer cells. NC could inhibit the interaction between tumor suppressor protein p53 and E6AP in cervical cancer cells, reduce the level of p53 ubiquitination modification, delay the degradation of p53 and increase the expression level of p53 protein. Conclusions NC can inhibit the ubiquitination and degradation of p53, improve the expression level of p53 protein, restore its tumor suppressor function, and thus play an anti -cervical cancer role.

5.
Acta Pharmaceutica Sinica B ; (6): 4523-4534, 2023.
Article Dans Anglais | WPRIM | ID: wpr-1011191

Résumé

Pregnane X receptor (PXR) is a ligand-activated nuclear receptor that transcriptionally upregulates drug-metabolizing enzymes [e.g., cytochrome P450 3A4 (CYP3A4)] and transporters. Although the regulation of PXR target genes is well-characterized, less is known about the regulation of PXR protein level. By screening an RNAi library, we identified the F-box-only protein 44 (FBXO44) as a novel E3 ligase for PXR. PXR abundance increases upon knockdown of FBXO44, and, inversely, decreases upon overexpression of FBXO44. Further analysis revealed that FBXO44 interacts with PXR, leading to its ubiquitination and proteasomal degradation, and we determined that the F-box associated domain of FBXO44 and the ligand binding domain of PXR are required for the functional interaction. In summary, FBXO44 regulates PXR protein abundance, which has downstream consequences for CYP3A4 levels and drug-drug interactions. The results of this study provide new insight into the molecular mechanisms that regulate PXR protein level and activity and suggest the importance of considering how modulating E3 ubiquitin ligase activities will affect PXR-mediated drug metabolism.

6.
Acta Pharmaceutica Sinica B ; (6): 4591-4606, 2023.
Article Dans Anglais | WPRIM | ID: wpr-1011184

Résumé

Although carbon monoxide (CO)-based treatments have demonstrated the high cancer efficacy by promoting mitochondrial damage and core-region penetrating ability, the efficiency was often compromised by protective autophagy (mitophagy). Herein, cannabidiol (CBD) is integrated into biomimetic carbon monoxide nanocomplexes (HMPOC@M) to address this issue by inducing excessive autophagy. The biomimetic membrane not only prevents premature drugs leakage, but also prolongs blood circulation for tumor enrichment. After entering the acidic tumor microenvironment, carbon monoxide (CO) donors are stimulated by hydrogen oxide (H2O2) to disintegrate into CO and Mn2+. The comprehensive effect of CO/Mn2+ and CBD can induce ROS-mediated cell apoptosis. In addition, HMPOC@M-mediated excessive autophagy can promote cancer cell death by increasing autophagic flux via class III PI3K/BECN1 complex activation and blocking autolysosome degradation via LAMP1 downregulation. Furthermore, in vivo experiments showed that HMPOC@M+ laser strongly inhibited tumor growth and attenuated liver and lung metastases by downregulating VEGF and MMP9 proteins. This strategy may highlight the pro-death role of excessive autophagy in TNBC treatment, providing a novel yet versatile avenue to enhance the efficacy of CO treatments. Importantly, this work also indicated the applicability of CBD for triple-negative breast cancer (TNBC) therapy through excessive autophagy.

7.
Journal of Integrative Medicine ; (12): 584-592, 2023.
Article Dans Anglais | WPRIM | ID: wpr-1010967

Résumé

OBJECTIVE@#To explore whether the ethanol extract of Herpetospermum caudigerum Wall (EHC), a Xizang medicinal plant traditionally used for treating liver diseases, can improve imiquimod-induced psoriasis-like skin inflammation.@*METHODS@#Immunohistochemistry and immunofluorescence staining were used to determine the effects of topical EHC use in vivo on the skin pathology of imiquimod-induced psoriasis in mice. The protein levels of interferon-γ (IFN-γ), tumor necrosis factor-α (TNF-α), and interleukin-17A (IL-17A) in mouse skin samples were examined using immunohistochemical staining. In vitro, IFN-γ-induced HaCaT cells with or without EHC treatment were used to evaluate the expression of keratinocyte-derived intercellular cell adhesion molecule-1 (ICAM-1) and chemokine CXC ligand 9 (CXCL9) using Western blotting and reverse transcription-quantitative polymerase chain reaction. The protein synthesis inhibitor cycloheximide and proteasome inhibitor MG132 were utilized to validate the EHC-mediated mechanism underlying degradation of ICAM-1 and CXCL9.@*RESULTS@#EHC improved inflammation in the imiquimod-induced psoriasis mouse model and reduced the levels of IFN-γ, TNF-α, and IL-17A in psoriatic lesions. Treatment with EHC also suppressed ICAM-1 and CXCL9 in epidermal keratinocytes. Further mechanistic studies revealed that EHC suppressed keratinocyte-derived ICAM-1 and CXCL9 by promoting ubiquitin-proteasome-mediated protein degradation rather than transcriptional repression. Seven primary compounds including ehletianol C, dehydrodiconiferyl alcohol, herpetrione, herpetin, herpetotriol, herpetetrone and herpetetrol were identified from the EHC using ultra-performance liquid chromatography-quadrupole-time of flight-mass spectrometry.@*CONCLUSION@#Topical application of EHC ameliorates psoriasis-like skin symptoms and improves the inflammation at the lesion sites. Please cite this article as: Zhong Y, Zhang BW, Li JT, Zeng X, Pei JX, Zhang YM, Yang YX, Li FL, Deng Y, Zhao Q. Ethanol extract of Herpetospermum caudigerum Wall ameliorates psoriasis-like skin inflammation and promotes degradation of keratinocyte-derived ICAM-1 and CXCL9. J Integr Med. 2023; 21(6): 584-592.


Sujets)
Animaux , Souris , Interleukine-17/métabolisme , Molécule-1 d'adhérence intercellulaire , Imiquimod/effets indésirables , Facteur de nécrose tumorale alpha/métabolisme , Ligands , Psoriasis/induit chimiquement , Kératinocytes , Inflammation/traitement médicamenteux , Chimiokines/métabolisme , Interféron gamma/métabolisme , Modèles animaux de maladie humaine , Souris de lignée BALB C
8.
Chinese Journal of Biotechnology ; (12): 4445-4462, 2023.
Article Dans Chinois | WPRIM | ID: wpr-1008035

Résumé

Plastics are widely used in human daily life, which bring great convenience. Nevertheless, the disposal of a large amount of plastic wastes also brings great pressure to the environment. Polyethylene terephthalate (PET) is a polymer thermoplastic material produced from petroleum. It has become one of the most commonly used plastics in the world due to its durability, high transparency, light weight and other characteristics. PET can exist in nature for a long time due to its complex structure and the difficulty in degradation, which causes serious pollution to the global ecological environment, and threatens human health. The degradation of PET wastes has since become one of the global challenges. Compared with physical and chemical methods, biodegradation is the greenest way for treating PET wastes. This review summarizes the recent advances on PET biodegradation including microbial and enzymatic degradation of PET, biodegradation pathway, biodegradation mechanisms, and molecular modification of PET-degrading enzymes. In addition, the prospect for achieveing efficient degradation of PET, searching and improving microorganisms or enzymes that can degrade PET of high crystallinity are presented, with the aimto facilitate the development, application and molecular modification of PET biodegradation microorganisms or enzymes.


Sujets)
Humains , Téréphtalate polyéthylène/métabolisme , Polymères , Dépollution biologique de l'environnement , Pétrole
9.
Japanese Journal of Physical Fitness and Sports Medicine ; : 335-341, 2023.
Article Dans Japonais | WPRIM | ID: wpr-1006937

Résumé

Skeletal muscle is a vital tissue not only for maintaining posture and body movements but also for energy metabolism in human body. Skeletal muscle is highly plastic in response to various stimuli, resistance exercise or anabolic hormones can increase muscle mass, which is termed “muscle hypertrophy”. Contrary, immobility, aging and severe illness can reduce muscle mass, which is termed “muscle atrophy”. Loss of skeletal muscle mass is associated with loss of independent living, the morbidity of a variety of diseases and mortality throughout life. Therefore, understanding mechanisms that regulate skeletal muscle mass is essential for improving the quality of life. Recent studies reported microRNAs (miRNAs), which is a class of non-coding RNAs, play a crucial role in the regulation of muscle mass. This review provides a current understanding of the function of miRNAs in regulation of skeletal muscle mass.

10.
Chinese Journal of Biotechnology ; (12): 2053-2069, 2023.
Article Dans Chinois | WPRIM | ID: wpr-981189

Résumé

In recent years, the petroleum-based plastic pollution problem has been causing global attention. The idea of "degradation and up-cycling of plastics" was proposed for solving the environmental pollution caused by non-degradable plastics. Following this idea, plastics would be firstly degraded and then reconstructed. Polyhydroxyalkanoates (PHA) can be produced from the degraded plastic monomers as a choice to recycle among various plastics. PHA, a family of biopolyesters synthesized by many microbes, have attracted great interest in industrial, agricultural and medical sectors due to its biodegradability, biocompatibility, thermoplasticity and carbon neutrality. Moreover, the regulations on PHA monomer compositions, processing technology, and modification methods may further improve the material properties, making PHA a promising alternative to traditional plastics. Furthermore, the application of the "next-generation industrial biotechnology (NGIB)" utilizing extremophiles for PHA production is expected to enhance the PHA market competitiveness, promoting this environmentally friendly bio-based material to partially replace petroleum-based products, and achieve sustainable development with carbon-neutrality. This review summarizes the basic material properties, plastic upcycling via PHA biosynthesis, processing and modification methods of PHA, and biosynthesis of novel PHA.


Sujets)
Polyhydroxyalcanoates , Matières plastiques , Biotechnologie , Pétrole , Carbone
11.
Chinese Journal of Biotechnology ; (12): 1998-2014, 2023.
Article Dans Chinois | WPRIM | ID: wpr-981185

Résumé

Plastics have brought invaluable convenience to human life since it was firstly synthesized in the last century. However, the stable polymer structure of plastics led to the continuous accumulation of plastic wastes, which poses serious threats to the ecological environment and human health. Poly(ethylene terephthalate) (PET) is the most widely produced polyester plastics. Recent researches on PET hydrolases have shown great potential of enzymatic degradation and recycling of plastics. Meanwhile, the biodegradation pathway of PET has become a reference model for the biodegradation of other plastics. This review summarizes the sources of PET hydrolases and their degradation capacity, degradation mechanism of PET by the most representative PET hydrolase-IsPETase, and recently reported highly efficient degrading enzymes through enzyme engineering. The advances of PET hydrolases may facilitate the research on the degradation mechanism of PET and further exploration and engineering of efficient PET degradation enzymes.


Sujets)
Humains , Hydrolases/métabolisme , Téréphtalate polyéthylène/métabolisme , Matières plastiques/métabolisme , Éthylènes
12.
Chinese Journal of Biotechnology ; (12): 1949-1962, 2023.
Article Dans Chinois | WPRIM | ID: wpr-981181

Résumé

Polyethylene (PE) is the most abundantly used synthetic resin and one of the most resistant to degradation, and its massive accumulation in the environment has caused serious pollution. Traditional landfill, composting and incineration technologies can hardly meet the requirements of environmental protection. Biodegradation is an eco-friendly, low-cost and promising method to solve the plastic pollution problem. This review summarizes the chemical structure of PE, the species of PE degrading microorganisms, degrading enzymes and metabolic pathways. Future research is suggested to focus on the screening of high-efficiency PE degrading strains, the construction of synthetic microbial consortia, the screening and modification of degrading enzymes, so as to provide selectable pathways and theoretical references for PE biodegradation research.


Sujets)
Polyéthylène/métabolisme , Bactéries/métabolisme , Matières plastiques/métabolisme , Dépollution biologique de l'environnement , Consortiums microbiens
13.
Chinese Journal of Biotechnology ; (12): 1930-1948, 2023.
Article Dans Chinois | WPRIM | ID: wpr-981180

Résumé

Polyolefin plastics are a group of polymers with C-C backbone that have been widely used in various areas of daily life. Due to their stable chemical properties and poor biodegradability, polyolefin plastic waste continues to accumulate worldwide, causing serious environmental pollution and ecological crises. In recent years, biological degradation of polyolefin plastics has attracted considerable attention. The abundant microbial resources in the nature offer the possibility of biodegradation of polyolefin plastic waste, and microorganisms capable of degrading polyolefin have been reported. This review summarizes the research progress on the biodegradation microbial resources and the biodegradation mechanisms of polyolefin plastics, presents the current challenges in the biodegradation of polyolefin plastics, and provides an outlook on future research directions.


Sujets)
Matières plastiques/métabolisme , Polymères/métabolisme , Polyènes , Dépollution biologique de l'environnement
14.
Chinese Journal of Biotechnology ; (12): 1912-1929, 2023.
Article Dans Chinois | WPRIM | ID: wpr-981179

Résumé

With the escalation of plastic bans and restrictions, bio-based plastics, represented by polylactic acid (PLA), have become a major alternative to traditional plastics in the current market and are unanimously regarded as having potential for development. However, there are still several misconceptions about bio-based plastics, whose complete degradation requires specific composting conditions. Bio-based plastics might be slow to degrade when it is released into the natural environment. They might also be harmful to humans, biodiversity and ecosystem function as traditional petroleum-based plastics do. In recent years, with the increasing production capacity and market size of PLA plastics in China, there is an urgent need to investigate and further strengthen the management of the life cycle of PLA and other bio-based plastics. In particular, the in-situ biodegradability and recycling of hard-to-recycle bio-based plastics in the ecological environment should be focused. This review introduces the characteristics, synthesis and commercialization of PLA plastics, summarizes the current research progress of microbial and enzymatic degradation of PLA plastics, and discusses their biodegradation mechanisms. Moreover, two bio-disposal methods against PLA plastic waste, including microbial in-situ treatment and enzymatic closed-loop recycling, are proposed. At last, the prospects and trends for the development of PLA plastics are presented.


Sujets)
Humains , Écosystème , Matières plastiques biodégradables , Polyesters , Dépollution biologique de l'environnement
15.
Chinese Journal of Biotechnology ; (12): 1867-1882, 2023.
Article Dans Chinois | WPRIM | ID: wpr-981176

Résumé

At present, the negative impact caused by white pollution has spread to all aspects of human society economy, ecosystem, and health, which causes severe challenges for developing the circular bioeconomy. As the largest plastic production and consumption country in the world, China has shouldered an important responsibility in plastic pollution control. In this context, this paper analyzed the relevant strategies of plastic degradation and recycling in the United States, Europe, Japan and China, measured the literature and patents in this field, analyzed the status quo of technology from the perspective of research and development trends, major countries, major institutions, and discussed the opportunities and challenges faced by the development of plastic degradation and recycling in China. Finally, we put forward future development suggestions which include the integration of policy system, technology path, industry development and public cognition.


Sujets)
Humains , Matières plastiques , Écosystème , Pollution de l'environnement , Recyclage , Politique (principe)
16.
Acta Pharmaceutica Sinica ; (12): 1221-1231, 2023.
Article Dans Chinois | WPRIM | ID: wpr-978680

Résumé

Tuberculosis (TB), an infectious disease caused by Mycobacterium tuberculosis (Mtb), is still one of the significant threats to human life. In recent years, the continuous exploration of small molecule inhibitors represented by bedaquinoline has brought new vitality into the field of tuberculosis. However, small molecule inhibitors will inevitably occur acquired drug resistance during clinical medication. As a new pharmacological mechanism, targeted protein degradation (TPD) achieves efficacy by destroying rather than inhibiting protein targets. It might be an excellent strategy to develop anti-tuberculosis drugs based on the TPD concept to solve drug resistance. This article reviews the protein degradation pathways of Mtb, such as the Pup proteasome system and the ClpP-ClpC1 complex enzyme system. The future development of these strategies into TPD drugs was prospected and summarized.

17.
Journal of Medical Biomechanics ; (6): E331-E337, 2023.
Article Dans Chinois | WPRIM | ID: wpr-987955

Résumé

Objective To study stress relaxation behaviors of cartilage scaffolds under different degradation cycles by using finite element analysis combined with theoretical models. Methods Based on the established degradation theoretical model, the elastic modulus of the scaffold was calculated under different degradation cycles. The finite element model of cartilage scaffolds was established and stress relaxation simulation was performed to analyze the variation of scaffold relaxation stress with time. The stress relaxation constitutive model was established to predict mechanical properties of the scaffold. Results The elastic modulus of cartilage scaffolds at 14 th, 28th, 42nd, 56th day after degradation was 32. 35, 31. 12, 29. 91, 28. 74 kPa, respectively. The upper layer for cartilage scaffolds was the largest. The overall relaxation stress of the scaffold decreased rapidly with time and then tended to be stable. At 8th week after degradation, the stress which the scaffold couldwithstand was still within the physiological load range of the cartilage. The predicted results of the stress relaxation constitutive model were in good agreement with the finite element simulation results. Conclusions The elastic modulus of the scaffold gradually decreases with the increase of degradation time. The longer the degradation period is, the less stress the scaffold can withstand. At the same degradation period, the larger the applied compressive strain, the larger the stress on the scaffold. Both the finite element simulation and stress relaxation constitutive model can effectively predict stress variations of cartilage scaffolds under degradation

18.
Chinese Journal of Medical Instrumentation ; (6): 598-601, 2023.
Article Dans Chinois | WPRIM | ID: wpr-1010246

Résumé

The composite material PLGA compounded with β-tricalcium phosphate (β-TCP) was prepared by melt blending method, and the absorbable interface screw was prepared by injection molding process. Prepare PBS buffer that simulates human body, conduct in vitro degradation experiments on interface screws according to relevant national and industry standards, then test and characterize interface screws at different time points for degradation of intrinsic viscosity, average molecular weight distribution, mass loss, mechanical properties and thermal properties. According to the degradation performance-time curve, determine the time node at which the interface screw loses the mechanical properties. In this paper, the in vitro degradation behavior of interfacial screws prepared from PLGA and β-TCP composites was studied in detail, providing a reference and basis for the degradation behavior of absorbable products prepared from PLGA and β-TCP composites.


Sujets)
Humains , Polyesters , Test de matériaux , Phosphates de calcium , Implant résorbable
19.
Acta Pharmaceutica Sinica B ; (6): 2736-2746, 2023.
Article Dans Anglais | WPRIM | ID: wpr-982867

Résumé

The current targeting drug delivery mainly relies on cancer cell surface receptors. However, in many cases, binding affinities between protein receptors and homing ligands is relatively low and the expression level between cancer and normal cells is not significant. Distinct from conventional targeting strategies, we have developed a general cancer targeting platform by building artificial receptor on cancer cell surface via a chemical remodeling of cell surface glycans. A new tetrazine (Tz) functionalized chemical receptor has been designed and efficiently installed on cancer cell surface as "overexpressed" biomarker through a metabolic glycan engineering. Different from the reported bioconjugation for drug targeting, the tetrazine labeled cancer cells not only locally activate TCO-caged prodrugs but also release active drugs via the unique bioorthogonal Tz-TCO click-release reaction. The studies have demonstrated that the new drug targeting strategy enables local activation of prodrug, which ultimately leads to effective and safe cancer therapy.

20.
Journal of Pharmaceutical Practice ; (6): 341-351, 2023.
Article Dans Chinois | WPRIM | ID: wpr-976525

Résumé

Targeted protein degradation (TPD) techniques eliminate pathogenic proteins by hijacking the intracellular proteolysis machinery which includes the ubiquitin-proteasome system (UPS) and the lysosomal degradation pathway, holding promise to overcome the limitations of traditional inhibitors and further broaden the target space including many “undruggable” targets, and provide new targeted treatments for drug discovery. In this review, recent advances in a variety of promising TPD strategies were summarized, such as proteolysis targeting chimera (PROTAC), molecular glue, lysosome-targeting chimaera (LYTAC), autophagosome-tethering compound (ATTEC), autophagy-targeting chimera AUTAC and AUTOTAC, particularly. The representative case studies, potential applications and challenges were analyzed.

SÉLECTION CITATIONS
Détails de la recherche