Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 3 de 3
Filtre
Ajouter des filtres








Gamme d'année
1.
Chinese Journal of Biotechnology ; (12): 361-377, 2021.
Article Dans Chinois | WPRIM | ID: wpr-878567

Résumé

Exoelectrogenic microorganisms are the research basis of microbial electrochemical technologies such as microbial fuel cells, electrolytic cells and electrosynthesis. However, their applications are restricted in organic degradation, power generation, seawater desalination, bioremediation, and biosensors due to the weak ability of biofilm formation and the low extracellular electron transfer (EET) efficiency between exoelectrogenic microorganisms and electrode. Therefore, engineering optimization of interaction between exoelectrogenic microorganisms and electrode interface recently has been the research focus. In this article, we review the updated progress in strategies for enhancing microbe-electrode interactions based on microbial engineering modifications, with a focus on the applicability and limitations of these strategies. In addition, we also address research prospects of enhancing the interaction between electroactive cells and electrodes.


Sujets)
Sources d'énergie bioélectrique , Biofilms , Électrodes , Transport d'électrons , Électrons
2.
Chinese Journal of Biotechnology ; (12): 1-14, 2021.
Article Dans Chinois | WPRIM | ID: wpr-878538

Résumé

Microbial fuel cell (MFC) is a bioelectrochemical device, that enables simultaneous wastewater treatment and energy generation. However, a few issues such as low output power, high ohmic internal resistance, and long start-up time greatly limit MFCs' applications. MFC anode is the carrier of microbial attachment, and plays a key role in the generation and transmission of electrons. High-quality bioelectrodes have developed into an effective way to improve MFC performance. Conjugated polymers have advantages of low cost, high conductivity, chemical stability and good biocompatibility. The use of conjugated polymers to modify bioelectrodes can achieve a large specific surface area and shorten the charge transfer path, thereby achieving efficient biological electrochemical performance. In addition, bacteria can be coated with nano-scale conjugated polymer and effectively transfer the electrons generated by cells to electrodes. This article reviews the recently reported applications of conjugated polymers in microbial fuel cells, focusing on the MFC anode materials modified by conjugated polymers. This review also systematically analyzes the advantages and limitations of conjugated polymers, and how these composite hybrid bioelectrodes solve practical issues such as low energy output, high inner resistance, and long starting time.


Sujets)
Bactéries , Sources d'énergie bioélectrique , Électricité , Électrodes , Polymères , Purification de l'eau
3.
Chinese Journal of Biotechnology ; (12): 2719-2731, 2020.
Article Dans Chinois | WPRIM | ID: wpr-878524

Résumé

Exoelectrogens are promising for a wide variety of potential applications in the areas of environment and energy, which convert chemical energy from organic matter into electrical energy by extracellular electrons transfer (EET). Microorganisms with different mechanisms and EET efficiencies have been elucidated. However, the practical applications of exoelectrogens are limited by their fundamental features. At present, it is difficult to realize the extensive application of exoelectrogens in complex and diverse environments by means of traditional engineering strategies such as rational design and directed evolution. The exoelectrogens with excellent performance in environments can be screened with efficient strain identification technologies, which promote the widespread applications of exoelectrogens. The aims of this review are to summarize the methods of screening based on different types of exoelectrogens, and to outline future research directions of strain screening.


Sujets)
Sources d'énergie bioélectrique , Électricité , Transport d'électrons
SÉLECTION CITATIONS
Détails de la recherche