Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 3 de 3
Filtre
Ajouter des filtres








Gamme d'année
1.
Journal of Public Health and Preventive Medicine ; (6): 20-23, 2024.
Article Dans Chinois | WPRIM | ID: wpr-1005898

Résumé

Objective To investigate the ameliorative effect of Lentinan (LNT) on sodium arsenite (SA)-induced hepatic lipid deposition in mice. Methods C57BL/6 mice were used as the experimental subjects, which were divided into control group, SA-exposed group, LNT + SA-exposed group and LNT control group. Blood and liver tissue samples were collected at the end of the experiment, and serum glutathione transaminase (ALT) and glutathione aminotransferase (AST) levels were detected by enzyme-linked immunosorbent assay (ELISA). A part of liver tissues was stained with hematoxylin-eosin (HE) or oil red O to observe the characteristics of liver pathological damage and lipid deposition, and another part of liver tissues was used to detect triglyceride (TG) and Adiponectin (APN) levels by ELISA. Results Compared with control group or LNT control group, SA-exposed group showed the increased levels of AST and ALT, showing the characteristics of liver histopathological damage and lipid deposition, and the APN level decreased while the TG level increased (P<0.05). Compared with SA-exposed group, the levels of AST and ALT decreased in LNT + SA-exposed group, showing the reduced degree of liver tissue damage and lipid deposition, and APN level upregulated while TG level downregulated (P<0.05). Conclusion Chronic SA exposure induces liver function damage, APN downregulation and lipid deposition in C57BL/6 mice, while LNT intervention leads to the significantly improvement of hepatic damage and lipid deposition, which may be related to the elevated APN level in liver.

2.
China Journal of Chinese Materia Medica ; (24): 1751-1759, 2023.
Article Dans Chinois | WPRIM | ID: wpr-981392

Résumé

Hepatic lipid deposition is one of the basic manifestations of obesity, and nowadays pharmacological treatment is the most important tool. Punicalagin(PU), a polyphenol derived from pomegranate peel, is a potential anti-obesity substance. In this study, 60 C57BL/6J mice were randomly divided into a normal group and a model group. After establishing a model of simple obesity with a high-fat diet for 12 weeks, the successfully established rat models of obesity were then regrouped into a model group, an orlistat group, a PU low-dose group, a PU medium-dose group, and a PU high-dose group. The normal group was kept on routine diet and other groups continued to feed the high-fat diet. The body weight and food intake were measured and recorded weekly. After 8 weeks, the levels of the four lipids in the serum of each group of mice were determined by an automatic biochemical instrument. Oral glucose tole-rance and intraperitoneal insulin sensitivity were tested. Hemoxylin-eosin(HE) staining was applied to observe the hepatic and adipose tissues. The mRNA expression levels of peroxisome proliferators-activated receptor γ(PPARγ) and C/EBPα were determined by real-time quantitative polymerase chain reaction(Q-PCR), and the mRNA and protein expression levels of adenosine 5'-monophosphate-activated protein kinase(AMPK), anterior cingulate cortex(ACC), and carnitine palmitoyltransferase 1A(CPT1A) were determined by Western blot. Finally, the body mass, Lee's index, serum total glyceride(TG), serum total cholesterol(TC), and low-density lipoprotein cholesterol(LDL-C) levels were significantly higher and high-density lipoprotein cholesterol(HDL-C) levels were significantly lower in the model group as compared with the normal group. The fat deposition in the liver was significantly increased. The mRNA expression levels of hepatic PPARγ and C/EBPα and the protein expression level of ACC were increased, while the mRNA and protein expression levels of CPT-1α(CPT1A) and AMPK were decreased. After PU treatment, the above indexes of obese mice were reversed. In conclusion, PU can decrease the body weight of obese mice and control their food intake. It also plays a role in the regulation of lipid metabolism and glycometabolism metabolism, which can significantly improve hepatic fat deposition. Mechanistically, PU may regulate liver lipid deposition in obese mice by down-regulating lipid synthesis and up-regulating lipolysis through activation of the AMPK/ACC pathway.


Sujets)
Rats , Souris , Animaux , Souris obèse , AMP-Activated Protein Kinases/métabolisme , Récepteur PPAR gamma/métabolisme , Souris de lignée C57BL , Foie/métabolisme , Obésité/génétique , Poids , Métabolisme lipidique , Alimentation riche en graisse/effets indésirables , Lipides , Cholestérol
3.
Chinese Pharmacological Bulletin ; (12): 107-113, 2021.
Article Dans Chinois | WPRIM | ID: wpr-1014300

Résumé

Aim To investigate the effect of dihydromyricetin (DHM) on lipid accumulation in liver of obese mice induced by high fat diet and its mechanism. Methods Sixty C57BL/6J mices were randomly divided into six groups (n = 10); (1)ND group; normal diet, (2)ND + L-DHM group; normal diet and treatment with low-dose DHM (125 mg • kg

SÉLECTION CITATIONS
Détails de la recherche