Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 5 de 5
Filtrer
1.
Zhongguo Zhong Yao Za Zhi ; (24): 4320-4327, 2023.
Article de Chinois | WPRIM | ID: wpr-1008686

RÉSUMÉ

With the development of imaging technology and artificial intelligence, hyperspectral imaging technology provides a fast, non-destructive, intelligent, and precise new method for the analysis of Chinese materia medica(CMM). This paper summarized the methods and applications of hyperspectral imaging technology combined with intelligent analysis technology in the field of CMM in recent years, focusing on the acquisition and preprocessing of hyperspectral data, intelligent analysis methods of hyperspectral data, and practical cases of these technologies in the field of CMM. Hyperspectral data of CMM can provide spectral information with nanometer-level resolution and rich spatial texture information simultaneously. This paper summarized the acquisition process, including black-and-white board calibration and region-of-interest extraction, and preprocessing methods including smoothing, differentiation, scale-space, and scattering correction. The feature extraction methods in terms of spectral, spatial, color, and texture were briefly described, and common modeling methods were summarized. Finally, this paper reviewed the research cases of the application of the above methods to the fields of CMM, such as authenticity identification, origin tracing, variety recognition, year identification, sulfur fumigation degree determination, and quantitative measurement.


Sujet(s)
Humains , Intelligence artificielle , Médicaments issus de plantes chinoises , Imagerie hyperspectrale , Matière médicale , Médecine traditionnelle chinoise , Technologie
2.
Zhongguo Zhong Yao Za Zhi ; (24): 4328-4336, 2023.
Article de Chinois | WPRIM | ID: wpr-1008687

RÉSUMÉ

This Fructus,study including and aimed to construct a rapid and nondestructive detection flavonoid,model betaine,for and of the content vitamin of(Vit four four quality C).index components Lycium barbarum polysaccharide,of inL ycii rawma total and C Hyperspectral data quantitative of terials modelswere powder developed Lycii using Fructus partial were squares effects collected,regression raw based LSR),on the support content vector the above components,the forest least(P regression compared,(SVR),the and effects random three regression(RFR)were algorithms.also The Four spectral predictive commonly data of the materialsand powder were were applied and of spectral quantitative for models reduction.compared.used were pre-processing screened methods feature to successive pre-process projection the raw algorithm data(SPA),noise competitive Thepre-processed for bands using adaptive reweigh ted sampling howed(CARS),the and maximal effects relevance based and raw minimal materials redundancy and(MRMR)were algorithms Following to optimize multiplicative the models.scatter The correction Based resultss(MS that prediction SPA on feature the powder prediction similar.PLSR C)denoising sproposed and integrated for model,screening the the coefficient bands,determination the effect(R_C~2)of(MSC-SPA-PLSR)coefficient was optimal.of on(R_P~2)thi of of calibration flavonoid,and and of all determination greater prediction0.83,L.barbarum inconte nt prediction of polysaccharide,total mean betaine,of Vit C were than smallest In the compared study,root with mean other prediction content squareserror models of the calibration(RMSEC)residual and deviation root squares was error2.46,prediction2.58,(RMSEP)and were the,and prediction(RPD)2.50,developed3.58,achieve respectively.rapid this the the quality mod el(MSC-SPA-PLSR)fourcomponents based Fructus,on hyperspectral which technology was approach to rapid and effective detection detection of the of Lycii in Lycii provided a new to the and nondestructive of of Fructus.


Sujet(s)
Spectroscopie proche infrarouge/méthodes , Bétaïne , Poudres , Méthode des moindres carrés , Algorithmes , Flavonoïdes
3.
Zhongguo Zhong Yao Za Zhi ; (24): 4337-4346, 2023.
Article de Chinois | WPRIM | ID: wpr-1008688

RÉSUMÉ

To realize the non-destructive and rapid origin discrimination of Poria cocos in batches, this study established the P. cocos origin recognition model based on hyperspectral imaging combined with machine learning. P. cocos samples from Anhui, Fujian, Guangxi, Hubei, Hunan, Henan and Yunnan were used as the research objects. Hyperspectral data were collected in the visible and near infrared band(V-band, 410-990 nm) and shortwave infrared band(S-band, 950-2 500 nm). The original spectral data were divided into S-band, V-band and full-band. With the original data(RD) of different bands, multiplicative scatter correction(MSC), standard normal variation(SNV), S-G smoothing(SGS), first derivative(FD), second derivative(SD) and other pretreatments were carried out. Then the data were classified according to three different types of producing areas: province, county and batch. The origin identification model was established by partial least squares discriminant analysis(PLS-DA) and linear support vector machine(LinearSVC). Finally, confusion matrix was employed to evaluate the optimal model, with F1 score as the evaluation standard. The results revealed that the origin identification model established by FD combined with LinearSVC had the highest prediction accuracy in full-band range classified by province, V-band range by county and full-band range by batch, which were 99.28%, 98.55% and 97.45%, respectively, and the overall F1 scores of these three models were 99.16%, 98.59% and 97.58%, respectively, indicating excellent performance of these models. Therefore, hyperspectral imaging combined with LinearSVC can realize the non-destructive, accurate and rapid identification of P. cocos from different producing areas in batches, which is conducive to the directional research and production of P. cocos.


Sujet(s)
Imagerie hyperspectrale , Wolfiporia , Chine , Méthode des moindres carrés , Machine à vecteur de support
4.
Zhongguo Zhong Yao Za Zhi ; (24): 4362-4369, 2023.
Article de Chinois | WPRIM | ID: wpr-1008690

RÉSUMÉ

Puerariae Lobatae Radix, the dried root of Pueraria lobata, is a traditional Chinese medicine with a long history. Puerariae Lobatae Caulis as an adulterant is always mixed into Puerariae Lobatae Radix for sales in the market. This study employed hyperspectral imaging(HSI) to distinguish between the two products. VNIR lens(spectral scope of 410-990 nm) and SWIR lens(spectral scope of 950-2 500 nm) were used for image acquiring. Multi-layer perceptron(MLP), partial least squares discriminant analysis(PLS-DA), and support vector machine(SVM) were employed to establish the full-waveband models and select the effective wavelengths for the distinguishing between Puerariae Lobatae Caulis and Puerariae Lobatae Radix, which provided technical and data support for the development of quick inspection equipment based on HSI. The results showed that MLP model outperformed PLS-DA and SVM models in the accuracy of discrimination with full wavebands in VNIR, SWIR, and VNIR+SWIR lens, which were 95.26%, 99.11%, and 99.05%, respectively. The discriminative band selection(DBS) algorithm was employed to select the effective wavelengths, and the discrimination accuracy was 93.05%, 98.05%, and 98.74% in the three different spectral scopes, respectively. On this basis, the MLP model combined with the effective wavelengths within the range of 2 100-2 400 nm can achieve the accuracy of 97.74%, which was close to that obtained with the full waveband. This waveband can be used to develop quick inspection devices based on HSI for the rapid and non-destructive distinguishing between Puerariae Lobatae Radix and Puerariae Lobatae Caulis.


Sujet(s)
Pueraria , Imagerie hyperspectrale , Médecine traditionnelle chinoise , Algorithmes , 29935
5.
Ciênc. rural (Online) ; 50(3): e20190731, 2020. tab, graf
Article de Anglais | LILACS-Express | LILACS | ID: biblio-1089569

RÉSUMÉ

ABSTRACT: Chlorophyll is a major factor affecting photosynthesis; and consequently, crop growth and yield. In this study, we devised a chlorophyll-content detection model for millet leaves in different stages of growth based on hyperspectral data. The hyperspectral images of millet leaves were obtained under a wavelength range of 380-1000 nm using a hyperspectral imager. Threshold segmentation was performed with near-infrared (NIR) reflectance and normalized difference vegetation index (NDVI) to intelligently acquire the regions of interest (ROI). Furthermore, raw spectral data were preprocessed using multivariate scatter correction (MSC). A correlation coefficient-successive projections algorithm (CC-SPA) was used to extract the characteristic wavelengths, and the characteristic parameters were extracted based on the spectral and image information. A partial least squares regression (PLSR) prediction model was established based on the single characteristic parameter and multi-characteristic parameter fusion. The determination coefficient (Rv 2) and the root-mean-square error (RMSEv) of the validation set for the multi-characteristic parameter fusion model were reported to be 0.813 and 1.766, respectively, which are higher than those obtained by the single characteristic parameter model. Based on the multi-characteristic parameter fusion, an attention-convolutional neural network (attention-CNN) (Rv 2 = 0.839, RMSEv = 1.451, RPD = 2.355) was established, which is more effective than the PLSR (Rv 2 = 0.813, RMSEv = 1.766, RPD = 2.167) and least squares support vector machine (LS-SVM) models (Rv 2 = 0.806, RMSEv = 1.576, RPD = 2.061). These results indicated that the combination of hyperspectral imaging and attention-CNN is beneficial to the application of nutrient element monitoring of crops.


RESUMO: A clorofila é um fator importante que afeta a fotossíntese e, consequentemente, o crescimento e o rendimento das culturas. Neste estudo, um modelo de detecção de conteúdo de clorofila é construído para folhas de milheto em diferentes estágios de crescimento, com base em dados hiperespectrais. As imagens hiperespectrais dos diferentes estágios de crescimento das folhas de milheto foram obtidas para 380-1000 nm, utilizando um gerador de imagens hiperespectrais. Uma segmentação de limiar foi realizada com refletância no infravermelho próximo (NIR) e índice de vegetação com diferença normalizada (NDVI) para adquirir de forma inteligente as regiões de interesse (ROI). Além disso, os dados espectrais brutos foram pré-processados usando o método de correção de dispersão multivariada (MSC). Um algoritmo de projeção de coeficiente de correlação sucessivo (CC-SPA) foi utilizado para extrair os comprimentos de onda característicos, e os parâmetros característicos foram extraídos com base nas informações espectrais e de imagem. O modelo de previsão de regressão parcial dos mínimos quadrados (PLSR) foi estabelecido com base nos parâmetros de característica única e na fusão de parâmetros de característica múltipla. O coeficiente de determinação (Rv2) e o erro quadrático médio da raiz (RMSEv) do conjunto de validação para o modelo de fusão de parâmetros com várias características foram obtidos como 0,813 e 1,766, sendo melhores do que os do modelo de parâmetro de característica única. Com base na fusão de parâmetros com várias características, foi estabelecida uma rede neural atenção-convolucional (atenção-CNN) (Rv2 = 0,839, RMSEv = 1,451, RPD = 2,355) mais eficaz que o PLSR (Rv2 = 0,813, RMSEv = 1,766, RPD = 2,167) e mínimos quadrados que suportam modelos de máquina de vetores (LS-SVM) (Rv2 = 0,806, RMSEv = 1,576, RPD = 2,061). Estes resultados indicam que o modelo atenção-CNN atinge uma previsão efetiva do teor de clorofila nas folhas de milheto usando os dados hiperespectrais. Além disso, esta pesquisa demonstra que a combinação de imagens hiperespectrais e a atenção-CNN se mostra benéfica para a aplicação do monitoramento dos elementos nutricionais das culturas.

SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE