Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 126
Filtrer
1.
Article de Chinois | WPRIM | ID: wpr-1039036

RÉSUMÉ

Bacterial biofilms gave rise to persistent infections and multi-organ failure, thereby posing a serious threat to human health. Biofilms were formed by cross-linking of hydrophobic extracellular polymeric substances (EPS), such as proteins, polysaccharides, and eDNA, which were synthesized by bacteria themselves after adhesion and colonization on biological surfaces. They had the characteristics of dense structure, high adhesiveness and low drug permeability, and had been found in many human organs or tissues, such as the brain, heart, liver, spleen, lungs, kidneys, gastrointestinal tract, and skeleton. By releasing pro-inflammatory bacterial metabolites including endotoxins, exotoxins and interleukin, biofilms stimulated the body’s immune system to secrete inflammatory factors. These factors triggered local inflammation and chronic infections. Those were the key reason for the failure of traditional clinical drug therapy for infectious diseases.In order to cope with the increasingly severe drug-resistant infections, it was urgent to develop new therapeutic strategies for bacterial-biofilm eradication and anti-bacterial infections. Based on the nanoscale structure and biocompatible activity, nanobiomaterials had the advantages of specific targeting, intelligent delivery, high drug loading and low toxicity, which could realize efficient intervention and precise treatment of drug-resistant bacterial biofilms. This paper highlighted multiple strategies of biofilms eradication based on nanobiomaterials. For example, nanobiomaterials combined with EPS degrading enzymes could be used for targeted hydrolysis of bacterial biofilms, and effectively increased the drug enrichment within biofilms. By loading quorum sensing inhibitors, nanotechnology was also an effective strategy for eradicating bacterial biofilms and recovering the infectious symptoms. Nanobiomaterials could intervene the bacterial metabolism and break the bacterial survival homeostasis by blocking the uptake of nutrients. Moreover, energy-driven micro-nano robotics had shown excellent performance in active delivery and biofilm eradication. Micro-nano robots could penetrate physiological barriers by exogenous or endogenous driving modes such as by biological or chemical methods, ultrasound, and magnetic field, and deliver drugs to the infection sites accurately. Achieving this using conventional drugs was difficult. Overall, the paper described the biological properties and drug-resistant molecular mechanisms of bacterial biofilms, and highlighted therapeutic strategies from different perspectives by nanobiomaterials, such as dispersing bacterial mature biofilms, blocking quorum sensing, inhibiting bacterial metabolism, and energy driving penetration. In addition, we presented the key challenges still faced by nanobiomaterials in combating bacterial biofilm infections. Firstly, the dense structure of EPS caused biofilms spatial heterogeneity and metabolic heterogeneity, which created exacting requirements for the design, construction and preparation process of nanobiomaterials. Secondly, biofilm disruption carried the risk of spread and infection the pathogenic bacteria, which might lead to other infections. Finally, we emphasized the role of nanobiomaterials in the development trends and translational prospects in biofilm treatment.

2.
Acta Pharmaceutica Sinica B ; (6): 795-807, 2024.
Article de Anglais | WPRIM | ID: wpr-1011261

RÉSUMÉ

Recent innovations in nanomaterials inspire abundant novel tumor-targeting CRISPR-based gene therapies. However, the therapeutic efficiency of traditional targeted nanotherapeutic strategies is limited by that the biomarkers vary in a spatiotemporal-dependent manner with tumor progression. Here, we propose a self-amplifying logic-gated gene editing strategy for gene/H2O2-mediated/starvation multimodal cancer therapy. In this approach, a hypoxia-degradable covalent-organic framework (COF) is synthesized to coat a-ZIF-8 in which glucose oxidase (GOx) and CRISPR system are packaged. To intensify intracellular redox dyshomeostasis, DNAzymes which can cleave catalase mRNA are loaded as well. When the nanosystem gets into the tumor, the weakly acidic and hypoxic microenvironment degrades the ZIF-8@COF to activate GOx, which amplifies intracellular H+ and hypoxia, accelerating the nanocarrier degradation to guarantee available CRISPR plasmid and GOx release in target cells. These tandem reactions deplete glucose and oxygen, leading to logic-gated-triggered gene editing as well as synergistic gene/H2O2-mediated/starvation therapy. Overall, this approach highlights the biocomputing-based CRISPR delivery and underscores the great potential of precise cancer therapy.

3.
Acta Pharmaceutica Sinica ; (12): 565-573, 2024.
Article de Chinois | WPRIM | ID: wpr-1016615

RÉSUMÉ

The lymphatic system, as well as pathological changes of the lymphatic system, underlies the progress of an array of diseases and conditions, including cancer, inflammation and autoimmune disorders, infectious diseases and metabolic syndrome. A variety of biological targets in the lymphatic system can be employed to modulate these high-burden diseases, and the pharmacokinetics and drug delivery strategies in the context of lymphatics are of critical importance to optimise drug exposure to lymphatic-related targets. As such, research and drug development in this field has gained increasing attention in recent years. This article aims to provide an overview of pharmaceutical research with a focus on the lymphatic system and therapeutic targets within the lymphatics, followed by lymphatic drug delivery approaches, which may be of interest for researchers in academia, pharmaceutical industry and regulatory sciences.

4.
Article de Chinois | WPRIM | ID: wpr-1021739

RÉSUMÉ

BACKGROUND:Currently,there are few kinds of drugs to treat kidney diseases,and many systemic drugs have some problems,such as serious side effects,rapid degradation in the body circulation and so on.At present,active targeting of nanoparticles has become a hot spot in the field of drug delivery,and the exploration of the pathological mechanism related to active targeting of nanoparticles is becoming more and more abundant. OBJECTIVE:To summarize the active targeting strategies in common renal diseases. METHODS:The first author and the second author searched CNKI,Wanfang,VIP,and PubMed databases using"nanoparticles,active targeting,target,kidney,kidney disease"as English key words and"nanoparticles,nanoparticles,targeting,active targeting,kidney disease,kidney"as Chinese key words.All relevant articles published before July 2,2023 were retrieved,screened,concluded,and summarized.Finally,62 articles were included for the summary. RESULTS AND CONCLUSION:The active targeting effect of nanoparticles has been studied in many common kidney diseases.The mechanism of active targeting is mainly the binding of ligands and receptors,by modifying the ligand on the nanoparticles to specifically target the receptor on the cells in the kidney;in which way active targeting is realized.Under different renal pathological conditions,the pathological changes of specific kidney sites may become the key breakthrough point to achieve active targeting.Although kidney-targeting nanoparticles have shown promise in the treatment of nonneoplastic kidney diseases,but it is still in the experimental phase in animals,and it is still a long way from applying these results to medical work.

5.
Article de Chinois | WPRIM | ID: wpr-1022723

RÉSUMÉ

Objective To prepare a nano drug(PFOB@Lip-MMC)with liposome as the carrier,liquid perfluorooc-tyl bromide(PFOB)as core and mitomycin C(MMC)loading on the liposome shell and study its inhibitory effect on the proliferation of human pterygium fibroblasts(HPFs).Methods The thin film dispersion-hydration ultrasonic method was used to prepare PFOB@Lip-MMC and detect its physical and chemical properties.Cell Counting Kit-8,Cam-PI cell viability staining and flow cytometry were employed to detect the impact of different concentrations of PFOB@Lip-MMC on the via-bility of HPFs.DiI fluorescence labeled PFOB@Lip-MMC was used to observe the permeability of the nano drug to HPFs under a laser confocal microscope.After establishing HPF inflammatory cell models,they were divided into the control group(with sterile phosphate-buffered saline solution added),PFOB@Lip group(with PFOB@Lip added),MMC group(with MMC added),PFOB@Lip-MMC group(with PFOB@Lip-MMC added)and normal group(with fresh culture medi-um added)according to the experimental requirements.After co-incubation for 24 h,flow cytometer was used to detect the apoptosis rate of inflammatory cells,and the gene expression levels of interleukin(IL)-1β,prostaglandin E2(PGE2),tumor necrosis factor(TNF)-α and vascular endothelial growth factor(VEGF)in cells were analyzed by PCR.Results The average particle size and Zeta potential of PFOB@Lip-MMC were(103.45±2.17)nm and(27.34±1.03)mV,respec-tively,and its entrapped efficiency and drug loading rate were(72.85±3.28)%and(34.27±2.04)%,respectively.The sustained-release MMC of drug-loaded nanospheres reached(78.34±2.92)%in vitro in a 24-hour ocular surface environ-ment.The biological safety of PFOB@Lip-MMC significantly improved compared to MMC.In terms of the DiI fluorescence labeled PFOB@Lip-MMC,after co-incubation with inflammatory HPFs for 2 h,DiI fluorescence labeling was diffusely dis-tributed in the cytoplasm of inflammatory HPFs.The apoptosis rate of inflammatory HPFs in the PFOB@Lip-MMC group[(77.23±4.93)%]was significantly higher than that in the MMC group[(51.62±3.28)%].The PCR examination results showed that the gene transcription levels of IL-1 β,PGE2,TNF-α and VEGF in other groups were significantly reduced com-pared to the control group and PFOB@Lip group,with the most significant decrease in the PFOB@Lip-MMC group(all P<0.05).Conclusion In this study,a novel nano drug(PFOB@LIP-MMC)that inhibited the proliferation of HPFs was successfully synthesized,and its cytotoxicity was significantly reduced compared to the original drugs.It has good bio-compatibility and anti-inflammatory effects,providing a new treatment approach for reducing the recurrence rate after pte-rygium surgery.

6.
Einstein (São Paulo, Online) ; 22: eAO0764, 2024. graf
Article de Anglais | LILACS-Express | LILACS | ID: biblio-1557729

RÉSUMÉ

ABSTRACT Objective To evaluate the in vitro and in vivo toxicities of polyethylene glycol-coated gold nanoparticles synthesized using a one-step process. Methods Gold nanoparticles were prepared via a co-precipitation method using polyethylene glycol, and the synthesis product was characterized. For the in vitro evaluation, a flow cytometry analysis with Annexin V and iodide propidium staining was used to assess cytotoxicity in MG-63 cells labeled with 10, 50, and 100µg/mL of nanoparticle concentration. For the in vivo evaluation, nanoparticles were administered intraperitoneally at a dose of 10mg/kg dose in 10-week-old mice. Toxicity was assessed 24 hours and 7 days after administration via histopathological analysis of various tissues, as well as through renal, hepatic, and hematopoietic evaluations. Results Synthesized nanoparticles exhibited different hydrodynamic sizes depending on the medium: 51.27±1.62nm in water and 268.12±28.45nm (0 hour) in culture medium. They demonstrated a maximum absorbance at 520nm and a zeta potential of -8.419mV. Cellular viability exceeded 90%, with less than 3% early apoptosis, 6% late apoptosis, and 1% necrosis across all labeling conditions, indicating minimal cytotoxicity differences. Histopathological analysis highlighted the accumulation of nanoparticles in the mesentery; however, no lesions or visible agglomeration was observed in the remaining tissues. Renal, hepatic, and hematopoietic analyses showed no significant differences at any time point. Conclusion Polyethylene glycol-coated gold nanoparticles exhibit extremely low toxicity and high biocompatibility, showing promise for future studies.

7.
Medisur ; 21(4)ago. 2023.
Article de Espagnol | LILACS-Express | LILACS | ID: biblio-1514596

RÉSUMÉ

Este artículo pretende alertar acerca de la relevancia de las nanociencias y la nanotecnología acompañada por la nanometrología para el desarrollo de las naciones en el siglo XXI. Se utilizó SciElo como base de datos, con las palabras clave: nanotecnología, nanomedicina, unidades de salud cubanas. El artículo realiza una aproximación a la nanotecnología con enfoque internacional y regional. Describe algunas aplicaciones de las nanotecnologías, con énfasis en la nanomedicina, así como los dilemas y consideraciones éticas asociadas a estas. Advierte acerca de la nocividad para la salud del hombre de algunos de estos desarrollos. Defiende la idea de que la nanometrología, resulta imprescindible para el logro de desarrollos tecnológicos, con mayor relevancia en el campo de la nanomedicina, así como que la nanotecnología debe ser tratada como la ciencia del siglo XXI por el impacto social, cultural y económico que tendrá, y con esto puede cambiar al mundo.


This article aims to alert about the relevance of nanosciences and nanotechnology accompanied by nanometrology for the nations development in the 21st century. Scielo was used as a database, with the keywords: nanotechnology, nanomedicine, Cuban health units. The article makes an approach to nanotechnology with an international and regional approach. It describes some applications of nanotechnologies, with an emphasis on nanomedicine, as well as the dilemmas and ethical considerations associated with them. It advises about these developments' harmfulness to human health, also defends the idea that nanometrology is essential for the technological developments achievement, with greater relevance in the nanomedicine field, as well as that nanotechnology should be treated as the 21st century science due to the social, cultural and economic impact that will have, and this can change the world.

8.
Acta Pharmaceutica Sinica ; (12): 506-515, 2023.
Article de Chinois | WPRIM | ID: wpr-965613

RÉSUMÉ

Exosome is a self-secreted phospholipid bilayer nanovesicles, and has shown great potential in drug delivery field due to the important advantages of low immunogenicity and homologous targeting. Phototherapy, mainly includes photodynamic therapy (PDT) and photothermal therapy (PTT), utilize light to activate photoactive drug for tumor cell killing. The advanced therapeutic strategy shows low toxic side-effect and non-invasion precise advantages, and thus has made great progress in tumor treatment over the past few years. Therefore, using exosomes as a drug delivery system to deliver phototherapeutic agents can improve therapeutic performances with a reduced side-effect, and further enhance their application potential for clinical tumor therapy. This review focus on the rising cross-subjects field involving exosomes and phototherapy, and mainly introduce the research progress and relative case of exosomes-based delivery system for cancer phototherapy. Additionally, the advantages and challenges of exosome-based phototherapy are also discussed and proposed.

9.
Acta Pharmaceutica Sinica ; (12): 779-788, 2023.
Article de Chinois | WPRIM | ID: wpr-965628

RÉSUMÉ

Size and surface modification are the two key factors affecting the effect of macrophages polarization induced by superparamagnetic iron oxide nanoparticles (SPIONs). The smaller the particle size, the better the polarization effect of SPIONs. Besides, the reasonable SPIONs surface modification method can also be used to enhance the polarization effect. In this study, SPIONs was prepared by solvothermal method and optimized by Box-Benhnken center combination design and response surface method. Furthermore, astragalus polysaccharide-superparamagnetic iron oxide nanocomplex (APS-SPIONs) was successfully constructed by EDC/NHS esterification method. The structure of APS-SPIONs was confirmed by dynamic light scatter and infrared spectrometer, and the contents of iron and polysaccharide were characterized by spectrophotometry. The effect of APS-SPIONs on inducing mouse macrophages RAW264.7 polarization was investigated by flow cytometry. The RAW264.7 macrophages-HepG2 human hepatoma cancer cells Transwell co-culture system was established to investigate APS-SPIONs improve anti-tumor function of macrophages in vitro, and the proliferation activity of APS-SPIONs on RAW264.7 detected by cell counting kit-8 (CCK-8) method. The results showed that the average particle size and zeta potential of APS-SPIONs were (82.93 ± 1.47) nm and (-24.00 ± 0.47) mV. Polysaccharide and Fe content were 8.69% and 7.04%, respectively. APS-SPIONs effectively induced the polarization of RAW264.7 into M1 type in vitro, improving the anti-tumor ability of macrophages in a co-culture system, without effecting the proliferation of macrophages. Our study provides a drug development strategy and preliminary research results to educate macrophages and reshape the tumor immune microenvironment to achieve tumor-killing effects.

10.
Journal of Integrative Medicine ; (12): 117-119, 2023.
Article de Anglais | WPRIM | ID: wpr-971648

RÉSUMÉ

Nano-ayurvedic medicine is an emerging field in which nanoparticles are functionalized with active principles of potent ayurvedic herbs to enhance their efficacy and target-specific delivery. Scientific advances in the past couple of decades have revealed the molecular mechanisms behind the anticancer potential of several ayurvedic herbs, attributed chiefly to their secondary metabolites including polyphenols and other active substances. With the advancement of nanotechnology, it has been established that size-, shape-, and surface-chemistry-optimized nanoparticles can be utilized as synergizing carriers for these phytochemicals. Nano-ayurvedic medicine utilizes herbs that are commonly used in Ayurveda to functionalize different nanoparticles and thereby enhance their potency and target specificity. Studies have shown that the active phytochemicals of such herbs can be coated onto the nanoparticles of different metals, such as gold, and that they work more efficiently than the free herbal extract, for example, in inhibiting cancer cell proliferation. Recently, an Ayurveda, Yoga & Naturopathy, Unani, Siddha and Homeopathy (AYUSH)-based clinical trial in humans indicated the anticancer potential of such formulations. Nano-ayurvedic medicine is emerging as a potential treatment option for hyperproliferative diseases.


Sujet(s)
Humains , Médecine ayurvédique , Homéopathie , Naturopathie , Yoga , Tumeurs/traitement médicamenteux
11.
Acta Pharmaceutica Sinica B ; (6): 967-981, 2023.
Article de Anglais | WPRIM | ID: wpr-971749

RÉSUMÉ

Platinum-based chemotherapy resistance is a key factor of poor prognosis and recurrence in hepatocellular carcinoma (HCC). Herein, RNAseq analysis revealed that elevated tubulin folding cofactor E (TBCE) expression is associated with platinum-based chemotherapy resistance. High expression of TBCE contributes to worse prognoses and earlier recurrence among liver cancer patients. Mechanistically, TBCE silencing significantly affects cytoskeleton rearrangement, which in turn increases cisplatin-induced cycle arrest and apoptosis. To develop these findings into potential therapeutic drugs, endosomal pH-responsive nanoparticles (NPs) were developed to simultaneously encapsulate TBCE siRNA and cisplatin (DDP) to reverse this phenomena. NPs (siTBCE + DDP) concurrently silenced TBCE expression, increased cell sensitivity to platinum treatment, and subsequently resulted in superior anti-tumor effects both in vitro and in vivo in orthotopic and patient-derived xenograft (PDX) models. Taken together, NP-mediated delivery and the co-treatment of siTBCE + DDP proved to be effective in reversing chemotherapy resistance of DDP in multiple tumor models.

12.
Acta Pharmaceutica Sinica B ; (6): 903-915, 2023.
Article de Anglais | WPRIM | ID: wpr-971765

RÉSUMÉ

We summarize the most important advances in RNA delivery and nanomedicine. We describe lipid nanoparticle-based RNA therapeutics and the impacts on the development of novel drugs. The fundamental properties of the key RNA members are described. We introduced recent advances in the nanoparticles to deliver RNA to defined targets, with a focus on lipid nanoparticles (LNPs). We review recent advances in biomedical therapy based on RNA drug delivery and state-of-the-art RNA application platforms, including the treatment of different types of cancer. This review presents an overview of current LNPs based RNA therapies in cancer treatment and provides deep insight into the development of future nanomedicines sophisticatedly combining the unparalleled functions of RNA therapeutics and nanotechnology.

13.
Acta Pharmaceutica Sinica ; (12): 1669-1676, 2023.
Article de Chinois | WPRIM | ID: wpr-978721

RÉSUMÉ

As an edible eukaryotic microorganism, Saccharomyces cerevisiae has the characteristics of high safety, rapid proliferation, low cost, easy transformation, etc. It has been widely used to produce vaccines, antibodies, insulin, etc. Up to now, yeast components, such as cell wall and yeast microcapsules, have been widely used in the treatment of tumors, inflammatory virus infection, post-traumatic osteoarthritis and other diseases. Among them, the components of yeast cell membrane are relatively simple and stable, which are easy to be extracted on a large scale. Therefore, yeast cell membrane material was used to construct yeast membrane vesicle nanosystem, and its biomedical application was preliminarily explored. In this study, Saccharomyces cerevisiae membrane vesicle (SMV) was prepared by co-extrusion method, and the particle size and surface potential of SMV, drug loading and release characteristics, stability, cell safety, and in vitro therapeutic effect were investigated. The results showed that the average particle size of SMV was 185.1 nm. Curcumin and silica nanoparticles were effectively encapsulated by co-incubation and ultrasonic methods, and the characteristics of cell membrane proteins were maintained. Moreover, SMV had good stability and biocompatibility. In addition, SMV could be effectively uptaken by macrophages RAW 264.7, and curcumin loaded SMV could effectively eliminate reactive oxygen species (ROS). In conclusion, the yeast plasma membrane vesicles prepared in this study could effectively deliver curcumin drugs and encapsulate nanoparticles, and could be effectively absorbed by macrophages and effectively eliminate ROS, providing new ideas and new methods for biomedical applications of yeast membrane materials.

14.
Acta Pharmaceutica Sinica ; (12): 834-843, 2023.
Article de Chinois | WPRIM | ID: wpr-978752

RÉSUMÉ

Liposome nanomedicine is a new drug preparation with nano scale, which is encapsulated by lipid bilayer vesicle structure. As a drug delivery carrier, liposome has many advantages such as good biocompatibility, biodegradation in vivo and strong targeting. The application of liposome nano drug delivery system can improve the pharmacokinetic behavior and efficacy of some drugs in vivo to a certain extent, and reduce toxic and side effects. After liposome nanomedicine enter into the body, free drugs will be released, so there will be loaded drugs and free drugs in the body. Loaded drugs are drug repositories, free drugs are related to their efficacy and adverse reactions. Therefore, the pharmacokinetics study of liposomes should focus on both loaded drugs and free drugs. Quantitative analysis of free drugs, liposome particles and their materials is a big challenge. The bioanalysis and pharmacokinetics of liposome nanomedicines will be introduced and discussed in this review. We hope this review will provide a reference for the development of liposome nanomedicine.

15.
Acta Pharmaceutica Sinica ; (12): 856-866, 2023.
Article de Chinois | WPRIM | ID: wpr-978755

RÉSUMÉ

Nanotechnology has shown obvious advantages in the field of medical treatment and diagnosis. Through the encapsulation of nano carriers, drugs not only enhance the therapeutic effect and reduce toxic and side effects, but also become intelligent responsive targeted drug systems through the modification on the surface of nano carriers. However, due to the obstacles in relevant basic research, production conditions, cost, clinical trials, and the lack of pharmacokinetic research on various drug loading systems, few nano systems have been used in therapy. In order to solve the above problems, this paper reviewed and analyzed the research progress of nano carriers in drug delivery, including their auxiliary role and characteristics, types and functions, pharmacokinetics, application prospects and challenges.

16.
Acta Pharmaceutica Sinica ; (12): 805-814, 2023.
Article de Chinois | WPRIM | ID: wpr-978759

RÉSUMÉ

With the rapid development of nanotechnology, the research and development of nanomedicines have become one of the development directions of drug innovation. Nanomedicines have special physical and chemical properties, such as nanoscale effects and nanostructure effects, so they have special biological properties, which may change the pharmacokinetic profiles such as absorption and tissue distribution of drug molecules, and thus affect their safety and effectiveness. There are many special concerns on the non-clinical safety evaluation of nanomedicines at the basis of ordinary drug because of the particularity of nanomedicines. On August 25, 2021, China issued Guidance on Non-clinical Safety Evaluation for Nanomedicines(interim). This article interprets comprehensively the guidance, focuses on the key points of non-clinical safety evaluation for nanomedicines, and expounds combined with some cases, aiming to provide reference for drug researchers.

17.
Acta Pharmaceutica Sinica B ; (6): 1828-1846, 2023.
Article de Anglais | WPRIM | ID: wpr-982793

RÉSUMÉ

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic has been a major health burden in the world. So far, many strategies have been investigated to control the spread of COVID-19, including social distancing, disinfection protocols, vaccines, and antiviral treatments. Despite the significant achievement, due to the constantly emerging new variants, COVID-19 is still a great challenge to the global healthcare system. It is an urgent demand for the development of new therapeutics and technologies for containing the wild spread of SARS-CoV-2. Inhaled administration is useful for the treatment of lung and respiratory diseases, and enables the drugs to reach the site of action directly with benefits of decreased dose, improved safety, and enhanced patient compliance. Nanotechnology has been extensively applied in the prevention and treatment of COVID-19. In this review, the inhaled nanomedicines and antibodies, as well as intranasal nanodrugs, for the prevention and treatment of COVID-19 are summarized.

18.
Acta Pharmaceutica Sinica B ; (6): 1726-1739, 2023.
Article de Anglais | WPRIM | ID: wpr-982811

RÉSUMÉ

Oxidative stress, due to the disruption of the balance between reactive oxygen species (ROS) generation and the antioxidant defense system, plays an important role in the pathogenesis of rheumatoid arthritis (RA). Excessive ROS leads to the loss of biological molecules and cellular functions, release of many inflammatory mediators, stimulate the polarization of macrophages, and aggravate the inflammatory response, thus promoting osteoclasts and bone damage. Therefore, foreign antioxidants would effectively treat RA. Herein, ultrasmall iron-quercetin natural coordination nanoparticles (Fe-Qur NCNs) with excellent anti-inflammatory and antioxidant properties were constructed to effectively treat RA. Fe-Qur NCNs obtained by simple mixing retain the inherent ability to remove ROS of quercetin and have a better water-solubility and biocompatibility. In vitro experiments showed that Fe-Qur NCNs could effectively remove excess ROS, avoid cell apoptosis, and inhibit the polarization of inflammatory macrophages by reducing the activation of the nuclear factor-κ-gene binding (NF-κB) pathways. In vivo experiments showed that the swollen joints of mice with rheumatoid arthritis treated with Fe-Qur NCNs significantly improved, with Fe-Qur NCNs largely reducing inflammatory cell infiltration, increasing anti-inflammatory macrophage phenotypes, and thus inhibiting osteoclasts, which led to bone erosion. This study demonstrated that the new metal-natural coordination nanoparticles could be an effective therapeutic agent for the prevention of RA and other diseases associated with oxidative stress.

19.
Acta Pharmaceutica Sinica B ; (6): 1847-1865, 2023.
Article de Anglais | WPRIM | ID: wpr-982830

RÉSUMÉ

Inflammatory diseases are key contributors to high mortality globally and adversely affect the quality of life. Current treatments include corticosteroids or nonsteroidal anti-inflammatories that may cause systemic toxicity and biologics that may increase the risk of infection. Composite nanoparticles that bear not only the drug payload but also targeting ligands for delivery to inflammation sites at lowered systemic toxicity are established in the nanomedicine field, but their relatively large size often leads to systemic clearance. Metal-based nanoparticles with intrinsic anti-inflammatory properties represent attractive alternatives. They are not only designed to be compact for crossing biological barriers (with the nanoparticle serving as a dual carrier and drug), but also support label-free tracking of their interactions with cells. The review commences with an outline of the common inflammatory diseases, inflammatory pathways involved, and conventional drug-loaded nanoparticles for anti-inflammation. Next, the review features the emerging applications of self-therapeutic metal-based nanoparticles (e.g., gold, coper oxide, platinum, ceria, and zinc oxide) for managing inflammatory diseases in animals over the past three years, focusing on therapeutic outcomes and anti-inflammatory mechanisms. The review concludes with an outlook on the biodistribution, long-term toxicity, and clinical translation of self-therapeutic metal-based nanoparticles.

20.
Acta Pharmaceutica Sinica B ; (6): 2346-2368, 2023.
Article de Anglais | WPRIM | ID: wpr-982862

RÉSUMÉ

Immunotherapy emerged as a paradigm shift in cancer treatments, which can effectively inhibit cancer progression by activating the immune system. Remarkable clinical outcomes have been achieved through recent advances in cancer immunotherapy, including checkpoint blockades, adoptive cellular therapy, cancer vaccine, and tumor microenvironment modulation. However, extending the application of immunotherapy in cancer patients has been limited by the low response rate and side effects such as autoimmune toxicities. With great progress being made in nanotechnology, nanomedicine has been exploited to overcome biological barriers for drug delivery. Given the spatiotemporal control, light-responsive nanomedicine is of great interest in designing precise modality for cancer immunotherapy. Herein, we summarized current research utilizing light-responsive nanoplatforms to enhance checkpoint blockade immunotherapy, facilitate targeted delivery of cancer vaccines, activate immune cell functions, and modulate tumor microenvironment. The clinical translation potential of those designs is highlighted and challenges for the next breakthrough in cancer immunotherapy are discussed.

SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE