Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 51
Filtre
1.
Article Dans Anglais | LILACS-Express | LILACS | ID: biblio-1535289

Résumé

Introduction: the in vitro study compared the dynamic cyclic fatigue resistance of 3 reciprocating NiTi files with heat treatment. Methods: we distributed 30 new endodontic files in three groups. The endodontic files selected for this experiment were: AF Blue R3 25/06 (AFB) (Fanta Dental, Shanghai, China), X1 Blue File 25/06 (X1B) (MK Life, Porto Alegre, RS, Brazil), and Reciproc Blue 08/25 (RB) (VDW, Munich, Germany. We measured the time to file fractureand the length of the fractured fragment. ANOVA analysis was used, followed by the Tukey test for multiple comparisons, with a significance level of 5% (P < 0,05). Results: the mean time in seconds until the file fractured was 170.7 ±15,1 for AFB files, 110,4 ±26,8 for X1B, and 163,3 ±22,9 for RB files. This difference was statistically significant when comparing X1B to AFB (p: 0,000) and X1B to RB (p: 0,000). However, there are no statistically significant differences between RB and AFB (p:0,739). Conclussions: this study found that RB and AFB files exhibit similar resistance to cyclic fatigue.


Introducción: el estudio in vitro comparó la resistencia a la fatiga cíclica dinámica de 3 limas NiTi recíprocas con tratamiento térmico. Métodos: distribuimos 30 limas endodónticas nuevas en tres grupos. Las limas endodónticas seleccionadas para este experimento fueron: AF Blue R3 25/06 (AFB) (Fanta Dental, Shanghai, China), X1 Blue File 25/06 (X1B) (MK Life, Porto Alegre, RS, Brasil), y Reciproc Blue 08/25 (RB) (VDW, Munich, Alemania. Se midió el tiempo transcurrido hasta la fractura de la lima y la longitud del fragmento fracturado. Se utilizó el análisis ANOVA, seguido de la prueba de Tukey para comparaciones múltiples, con un nivel de significación del 5% (P < 0.05). Resultados: el tiempo medio en segundos hasta la fractura de la lima fue de 170.7 ±15.1 para las limas AFB, 110.4 ±26.8 para las X1B y 163.3 ±22.9 para las RB. Esta diferencia fue estadísticamente significativa al comparar X1B con AFB (p: 0.000) y X1B con RB (p: 0.000). Sin embargo, no hay diferencias estadísticamente significativas entre RB y AFB (p:0.739). Conclusiones: en este estudio se ha comprobado que las limas RB y AFB presentan una resistencia similar a la fatiga cíclica.

2.
Belo Horizonte; s.n; 2023. 64 p. ilus, graf, tab.
Thèse Dans Portugais | LILACS, BBO | ID: biblio-1509346

Résumé

A introdução da liga NiTi na endodontia proporcionou a fabricação de instrumentos com excelentes propriedades mecânicas, e uma das principais características é a possibilidade de alteração das temperaturas de transformação da liga, o qual pode possibilitar a presença de martensita em temperatura ambiente e consequentemente um efeito memória de forma. Entretanto, alguns dos sistemas comercializados atualmente possuem pouca ou nenhuma informação científica relatando suas propriedades mecânicas, características de design e métodos de fabricação. O objetivo deste trabalho foi comparar características geométricas, metalúrgicas e propriedades mecânicas (resistência à torção e flexão) de instrumentos Reciproc Blue (VDW, Munique, Alemanha), e quatro sistemas reciprocantes réplicas. Um total de 39 instrumentos de cada um dos sistemas reciprocantes, Reciproc Blue (RB), Prodesign R (PDR), V File (VF), V+ File (V+) e Univy One (UO) foram utilizados na pesquisa. O programa de Image J foi utilizado para mensuração dos diâmetros a cada milímetro da parte ativa e da área da seção transversal a 3 mm da ponta dos instrumentos. Imagens de MEV da parte ativa foram realizados para avaliar o acabamento superficial dos instrumentos. A composição atômica, fases presentes e temperaturas de transformação foram verificadas através de EDS, DRX e DSC, respectivamente. A flexibilidade foi aferida através de ensaios de dobramento até 45º conforme a especificação ISO 3630-1, e os ensaios de resistência à torção foram realizados de acordo com a especificação Nº28 ANSI/ADA. Todos os instrumentos apresentaram uma quantidade aproximadamente equiatômica de níquel e titânio. A análise qualitativa das fases cristalinas realizada através de ensaios de DRX, demonstrou a predominância de Fase R em todos os grupos, com exceção do grupo UO que apresenta uma mistura de fase R e martensita B19'. Na avaliação da área da seção, o instrumento RB obteve valores intermediários, os instrumentos PDR e V+ possuem menores valores e os instrumentos VF e UO possuem maiores valores. Observou-se grande impacto da geometria sobre as propriedades mecânicas, sendo que aqueles sistemas que apresentavam menor área que RB (PDR, V+) mostraram-se mais flexíveis e menos resistentes à torção (p<0.05), e o instrumento VF que teve maior área apresentou, como esperado, menos flexibilidade (p<0.05) e resistência torcional semelhante (p>0.05). A única exceção se deu com o sistema UO, que embora apresentasse uma maior área de seção, mostrou-se mais flexível e menos resistente à torção, provavelmente por influência da maior quantidade de martensita presente à temperatura ambiente. Nenhum dos instrumentos réplicas avaliados apresentaram características e comportamento mecânico iguais ao sistema padrão RB. Sugere-se que mais estudos devem ser realizados para a comparação do comportamento clínico destes instrumentos.


The introduction of NiTi alloy in endodontics has allowed the manufacturing of instruments with excellent mechanical properties, and one of the main characteristics is the ability to change alloy's transformation temperature, which can enable the presence of martensite at room temperature and consequently favor a shape memory effect. However, some of the currently marketed systems have limited or no scientific information regarding their mechanical properties, design characteristics, and manufacturing methods. The aim of this study was to compare the geometric characteristics, metallurgical aspects, and mechanical properties (torsional and flexural strength) of Reciproc Blue instruments (VDW, Munich, Germany) with four replica-like reciprocating systems. A total amount of 39 instruments from each reciprocating system, namely Reciproc Blue (RB), Prodesign R (PDR), V File (VF), V+ File (V+), and Univy One (UO), were used in the study. The Image J program was used to measure the diameters at every millimeter along the instruments active portion and the cross-sectional area at 3 mm from the instrument tip. SEM images of the active portion were obtained to evaluate the surface finishing of the instruments. Atomic composition, phases present, and transformation temperatures were determined through EDS, XRD, and DSC analyses, respectively. Flexibility was assessed by bending tests up to 45° according to ISO 3630-1 specifications, and torsional strength tests were performed according with ANSI/ADA Specification No. 28. All instruments exhibited an approximately equiatomic composition of nickel and titanium. Qualitative analysis of the crystalline phases using XRD tests demonstrated the predominance of the R-phase in all groups, except for the UO group, which exhibited a mixture of Rphase and B19' martensite. In terms of diameter and cross-sectional area evaluation, the RB instrument obtained intermediate values, while the PDR and V+ instruments had smaller values, and the VF and UO instruments had larger values. A significant impact of geometry on mechanical properties was observed, with systems exhibiting a smaller area than RB (PDR, V+) being more flexible and less torsion-resistant (p<0.05), and the VF instrument with a larger area showed, as expected, less flexibility (p<0.05) and similar torsional resistance (p>0.05). The only exception was the UO system, which, despite having a larger geometric configuration, exhibited greater flexibility and less torsional resistance, likely due to the higher amount of martensite present at room temperature. None of the replica-like instruments evaluated showed identical characteristics and mechanical behavior to the standard RB system. Further studies are suggested to compare the clinical performance of these instruments.


Sujets)
Calorimétrie différentielle à balayage , Endodontie , Torsion mécanique , Alliages à mémoire de forme , Essais Mécaniques
3.
Journal of Medical Biomechanics ; (6): E283-E289, 2023.
Article Dans Chinois | WPRIM | ID: wpr-987948

Résumé

Objective To evaluate biomechanical properties of the nickel-titanium (NiTi) memory alloy stent and its in vitro biomechanical properties for lumbar interbody fusion. Methods The mechanical properties of the NiTi memory alloy stent were tested on mechanical testing machine. Moreover, lumbar interbody fusion was simulated on fresh lumbar specimens, and biomechanical properties of the NiTi memory alloy stent with matching bone graft for used for lumbar interbody fusion were analyzed and compared with the traditional box-shape cage. Results The maximum compressive strength of the NiTi memory alloy stent was ( 12 964 ± 962) N. The maximum deformation within the effective range of memory characteristics was (4. 68±0. 03) mm. The recovery rate of the NiTi memory alloy stent was up to 99. 86% . Compared with the intact lumbar model, the stability of the operative segment after the simulated lumbar interbody fusion using NiTi memory alloy stent alone was increased in the direction of anterior flexion, posterior extension, lateral flexion and rotation, which was equivalent to the box shape cage group (P>0. 05). After the combined use of autogenous bone granule and absorbable bone cement the ROM of the operative segment was further reduced (P0. 05). The pull-out strength of the NiTi memory alloy stent with matching bone graft group was significantly stronger than that of the box-shape cage group (P<0. 05). Conclusions The NiTi memory alloy stent in this study was designed with a matched bone granule-absorbable bone cement graft,which provided a new idea for the further optimization and development of lumbar interbody fusion. With excellent support and deformation properties, this NiTi memory alloy stent is biomechanical equivalent to the traditional box shape cage for lumbar interbody fusion, and can greatly improve the stability of surgical segment and the pull-out strength of implants after the combined use of autogenous bone granule and absorbable bone cement.

4.
Journal of Medical Biomechanics ; (6): E184-E188, 2021.
Article Dans Chinois | WPRIM | ID: wpr-904384

Résumé

Objective To evaluate the biomechanical properties of lumbar interbody fusion with NiTi memory alloy stent-autogenous bone granule-absorbable bone cement. Methods The normal L3-5 segment finite element model (M0), L4-5 intervertebral fusion model with box fusion cage (M1), L4-5 intervertebral fusion model with NiTi memory alloy stent (M2) and L4-5 interbody fusion model with bone granule-absorbable bone cement for casting bone graft (M3) were constructed, respectively. The models were applied with mechanical loading to analyze the mechanical stability and the peak stress of L4 interior endplate. Results The range of motion (ROM) of L4-5 segment in M1 and M2 models was significantly lower than that of M0 model under flexion, extension, lateral flexion and axial rotation. In M3 model, the stability of the surgical segment was further improved and the peak stress of L4 interior endplate was much smaller than that of M1 and M2 models. Conclusions NiTi memory alloy stent and traditional box fusion cage have biomechanical equivalence when used alone in lumbar interbody fusion, and application of bone granule-absorbable bone cement for casting bone graft can further improve the stability and reduce the stress of endplate.

5.
Chinese Journal of Medical Instrumentation ; (6): 119-124, 2021.
Article Dans Chinois | WPRIM | ID: wpr-880436

Résumé

Effects of heat treatment conditions (including temperature and time) on the shape memory recovery and corrosion resistance of NiTi self-expanding vascular stents were studied based on working mechanism and clinical use. The


Sujets)
Alliages , Corrosion , Température élevée , Test de matériaux , Endoprothèses , Propriétés de surface , Température , Titane
6.
Chinese Journal of Clinical Thoracic and Cardiovascular Surgery ; (12): 1362-1366, 2020.
Article Dans Chinois | WPRIM | ID: wpr-837685

Résumé

@#As one of the stimulus-response polymeric intelligent materials, shape memory polymers have been widely applied in biomedicine due to their better biocompatibility, higher controllability, stronger deformation restorability and biodegradability compared with shape memory alloys and shape memory ceramics. This review will introduce the structural principles of shape memory polymers and summarize their applications in the treatment of vascular diseases, especially in endovascular therapy. At the same time, the related technical problems and the future of shape memory polymers are prospected. With the continuous development of processing technology and materials, it can be predicted that shape memory polymers will be more widely used in the medical field.

7.
Biomedical Engineering Letters ; (4): 435-447, 2019.
Article Dans Anglais | WPRIM | ID: wpr-785530

Résumé

In the recent years, there has been a growing interest in research community towards the application of smart materials for bio-medical structural health monitoring. Amongst the smart materials, directly bonded piezo sensors (DBPS), based on the electro-mechanical impedance (EMI) technique, have been successfully employed for the above purpose. The principle behind the EMI technique is that high frequency excitations (typically > 30 kHz) generated by a surface bonded PZT patch are used to detect changes in structural drive point impedance caused by cracks or any other type of damage. Bone healing and damage have been shown to be successfully monitored using the DBPS. However, in most of the diagnostic cases of live human and animal subjects, directly bonding a PZT patch is always an irritant or hazard for a live subject. To circumvent direct bonding, the authors have developed and experimentally demonstrated a non-bonded piezo sensor (NBPS) configuration as a good alternative to DBPS while maintaining the effectiveness of measurement well within discernible limits. This paper presents further improvement in the NBPS configuration aiming at autonomous operation of the gripping mechanism using shape memory alloy (SMA) wires. The experiments are performed on replicas of femur bone in healthy and osteoporosis state. This paper shows the effective use of SMA clamping for bone identification and its damage assessment in comparison to earlier mechanical gripping using jubilee clamps. This paper also covers impedance based identification applied to SMA and clamp based NBPS configurations. In place of raw admittance signatures, effective drive point impedance is utilized for the purpose of bone diagnostics which provides a more realistic assessment of the condition of bone.


Sujets)
Animaux , Humains , Alliages , Constriction , Diagnostic , Impédance électrique , Fémur , Force de la main , Mémoire , Ostéoporose
8.
Chinese Journal of Reparative and Reconstructive Surgery ; (12): 192-194, 2018.
Article Dans Chinois | WPRIM | ID: wpr-856829

Résumé

Objective: To compare the biomechanical characteristics of self-made nickel-titanium shape memory alloy stepped plate with calcaneal plate and cannulated compression screws in fixing calcaneal osteotomy.

9.
Chinese Journal of Reparative and Reconstructive Surgery ; (12): 1091-1095, 2018.
Article Dans Chinois | WPRIM | ID: wpr-856728

Résumé

Objective: To summarize the research progress of biocompatibility and surface modification of nickel titanium shape memory alloys (Ni-Ti SMA). Methods: The relative researches about Ni-Ti SMA at home and abroad were reviewed, collated, analyzed, and summarized. Results: At present, Ni-Ti SMA as an internal fixation material has been widely used in clinic. It has the following advantages: the super elasticity, the shape memory characteristic, the good wear resistance, and the strong corrosion resistance. It also can effectively avoid the internal fixator rupture caused by stress shielding. After surface modification, the biocompatibility of Ni-Ti SMA has been improved. Conclusion: The Ni-Ti SMA is the most promising alloy material for the long-term internal fixator because of its excellent material properties.

10.
Chinese Journal of Biotechnology ; (12): 831-838, 2016.
Article Dans Chinois | WPRIM | ID: wpr-337418

Résumé

A series of bio-based thermosetting polyurethanes (Bio-PUs) were synthesized by the crosslinking reaction of polylactide and its copolymers diols with hexamethylene diisocyanate (HDI) trimer. The obtained Bio-PUs were characterized by Fourier Transform Infrared Spectroscopy (FTIR), Differential Scanning Calorimetry (DSC), Thermal Gravimetric Analysis (TGA), universal tensile testing machine and cytotoxicity test. Results indicate that the PLA copolymer (P(LA-co-CL)) diols reduced the glass transition temperature (Tg) of Bio-PUs and improved their thermal stability, compared with PLA diols. The Bio-PUs synthesized from P (LA-co-CL) diols exhibit better mechanical performance and shape memory properties. Especially, Young modulus and elongation at break of the obtained Bio-PUs were 277.7 MPa and 230% respectively; the shape recovery time of the obtained Bio-PUs at body temperature was only 93 s. Furthermore, alamar blue assay results showed that the obtained Bio-PUs had no cell toxicity.


Sujets)
Matériaux biocompatibles , Chimie , Test de matériaux , Polyesters , Chimie , Polymères , Polyuréthanes , Chimie , Spectroscopie infrarouge à transformée de Fourier , Température
11.
International Journal of Biomedical Engineering ; (6): 43-48, 2016.
Article Dans Chinois | WPRIM | ID: wpr-489578

Résumé

Shape memory polymer (SMP) is a new type of functional materials.SMP has lots of advantages such as low density,light weight,high shape-recovery rate and low cost,but its stiffness is low and shape recovery force is small.Therefore,the reinforced SMP composite has become a hot research focus.The latest progress of reinforced SMP composite is reviewed,with the emphasis placed on the analysis of the influence of reinforced materials on SMP properties including short fibers,particles and the mixture of fibers and particles.Finally,problems exist in the study and the prospect of reinforced SMP composite are discussed briefly.

12.
Journal of Korean Neurosurgical Society ; : 61-64, 2015.
Article Dans Anglais | WPRIM | ID: wpr-166142

Résumé

A number of dynamic stabilization systems have been used to overcome the problems associated with spinal fusion with rigid fixation recently and the demand for an ideal dynamic stabilization system is greater for younger patients with multisegment disc degeneration. Nitinol, a shape memory alloy of nickel and titanium, is flexible at low temperatures and regains its original shape when heated, and the Nitinol shape memory loop (SML) implant has been used as a posterior tension band mostly in decompressive laminectomy cases because the Nitinol implant has various characteristics such as high elasticity and a tensile force, flexibility, and biological compatibility. The reported short-term outcomes of the application of SMLs as posterior column supporters in cervical and lumbar decompressive laminectomies seem to be positive, and complications are minimal except for the rare occurrence of pullout and fracture of the SML. However, there was no report of neurological complications related to neural compression in spite of the use of the loop of SML in the epidural space. The authors report a case of delayed development of radiating pain caused by subsidence of the SML resulting epidural compression.


Sujets)
Humains , Alliages , Élasticité , Espace épidural , Température élevée , Dégénérescence de disque intervertébral , Laminectomie , Mémoire , Nickel , Flexibilité , Arthrodèse vertébrale , Titane
13.
Rev. bras. odontol ; 69(2): 266-271, Jul.-Dez. 2012. ilus, tab
Article Dans Portugais | LILACS | ID: lil-720356

Résumé

As ligas de niquel-titânio (Ni-Ti) são usadas na fabricação de fios ortodônticos devido principalmente a sua maior resiliência e menor módulo de elasticidade quando comparadas com outras ligas metálicas, especialmente o aço inoxidável. O objetivo do presente trabalho foi comparar as propriedades mecânicas em flexão de fios de liga com memória de forma de diferentes fabricantes e lotes. Dois lotes de três fabricantes foram ensaiados em flexão três pontos de acordo com a norma ISO 15841:2006(E). Os resultados mostraram que os fios designados como termoativados geram tensões menores que os fios designados como superelásticos, observou-se variações de até 28% entre fios designados como superelásticos e 31% entre fios designados como termoativados. Na comparação dos lotes do mesmo fabricante observou-se também a não homogeneidade entre os fios.


The nickel-titanium (Ni-Ti) alloys are used in the manufacture of orthodontic wires mainly due to its greater resilience and low modulus of elasticity when compared to other alloys, particularly stainless steel. The aim of this study was to compare the mechanical properties of shape memory alloys wires in three-point bending in different manufacturers. Two lots of three manufacturers were tested in three-point bending according to ISO 15841:2006 (E). The results showed that wires designated as termoactivated generated lower tensions than the designated as superelastic, variations of up to 28% between wires designated as superelastic and 31% between wires d esignated as termoactivated were found. In the manufacturer lots comparison was also not observed homogeneity between wires.


Sujets)
Alliage dentaire , Résistance à la flexion
14.
Dental press j. orthod. (Impr.) ; 17(3): 71-82, May-June 2012. ilus, tab
Article Dans Anglais | LILACS | ID: lil-646352

Résumé

OBJECTIVE: A systematic review on nickel-titanium wires was performed. The strategy was focused on Entrez-PubMed-OLDMEDLINE, Scopus and BioMed Central from 1963 to 2008. METHODS: Papers in English and French describing the behavior of these wires and laboratorial methods to identify crystalline transformation were considered. A total of 29 papers were selected. RESULTS: Nickel-titanium wires show exceptional features in terms of elasticity and shape memory effects. However, clinical applications request a deeper knowledge of these properties in order to allow the professional to use them in a rational manner. In addition, the necessary information regarding each alloy often does not correspond to the information given by the manufacturer. Many alloys called "superelastic" do not present this effect; they just behave as less stiff alloys, with a larger springback if compared to the stainless steel wires. CONCLUSIONS: Laboratory tests are the only means to observe the real behavior of these materials, including temperature transition range (TTR) and applied tensions. However, it is also possible to determine in which TTR these alloys change the crystalline structure.

15.
Clinics in Orthopedic Surgery ; : 307-312, 2012.
Article Dans Anglais | WPRIM | ID: wpr-206706

Résumé

BACKGROUND: The incidence of distal femur fracture in the elderly has been increasing recently, and commonly occurs with osteoporosis. Retrograde intramedullary nailing has been considered a good surgical option for distal femur fracture. The purpose of the present study was to present our surgical results with retrograde intramedullary nailing for distal femur fractures with osteoporosis. METHODS: Thirteen patients diagnosed with extra-articular distal femur fracture and osteoporosis and managed with retrograde intramedullary nailing were retrospectively reviewed. Cement augmentation was used in four patients, shape memory alloy was used in eight patients and both were used in one patient. All patients were followed up for more than 2 years. Radiologic alignments. were scored and Tegner and the Lysholm activity score was used for a functional assessment. RESULTS: The average time to clinical union was 13 weeks (range, 10 to 15 weeks). In 12 of our cases, the total alignment scores were excellent. At the last follow-up, the mean range of motion was 116degrees (range, 110degrees to 125degrees). The average functional score at postoperative 1 year was 2.6 (range, 1 to 5). CONCLUSIONS: Retrograde intramedullary nailing is a good surgical option for distal femur fracture with osteoporosis. Cement augmentation and shape memory alloy can also be used for added mechanical stability. This surgical technique is very useful for distal femur fracture with osteoporosis as it promotes fracture healing and early rehabilitation.


Sujets)
Sujet âgé , Sujet âgé de 80 ans ou plus , Femelle , Humains , Mâle , Alliages , Ciments osseux , Fractures du fémur/anatomopathologie , Fémur/anatomopathologie , Ostéosynthese intramedullaire/instrumentation , Ostéoporose post-ménopausique/anatomopathologie , Fractures ostéoporotiques/anatomopathologie , Amplitude articulaire , Études rétrospectives , Résultat thérapeutique
16.
Journal of Korean Neurosurgical Society ; : 21-26, 2012.
Article Dans Anglais | WPRIM | ID: wpr-58025

Résumé

OBJECTIVE: To evaluate a new posterior atlantoaxial fixation technique using a nitinol shape memory loop as a simple method that avoids the risk of vertebral artery or nerve injury. METHODS: We retrospectively evaluated 14 patients with atlantoaxial instability who had undergone posterior C1-2 fusion using a nitinol shape memory loop. The success of fusion was determined clinically and radiologically. We reviewed patients' neurologic outcomes, neck disability index (NDI), solid bone fusion on cervical spine films, changes in posterior atlantodental interval (PADI), and surgical complications. RESULTS: Solid bone fusion was documented radiologically in all cases, and PADI increased after surgery (p<0.05). All patients remained neurologically intact and showed improvement in NDI score (p<0.05). There were no surgical complications such as neural tissue or vertebral artery injury or instrument failure in the follow-up period. CONCLUSION: Posterior C1-2 fixation with a nitinol shape memory loop is a simple, less technically demanding method compared to the conventional technique and may avoid the instrument-related complications of posterior C1-2 screw and rod fixation. We introduce this technique as one of the treatment options for atlantoaxial instability.


Sujets)
Humains , Alliages , Études de suivi , Mémoire , Cou , Études rétrospectives , Rachis , Artère vertébrale
17.
Journal of Medical Biomechanics ; (6): E339-E343, 2012.
Article Dans Chinois | WPRIM | ID: wpr-803929

Résumé

Objective To investigate the feasibility of a novel Ni-Ti shape memory alloy vertebral reduction fixator for treating vertebral compression fractures. Methods The experimental thoracic-lumbar fracture units made from adult fresh-frozen cadaver vertebral specimens were randomly assigned to 3 groups for testing: control group, percutaneous kyphoplasty group (PKP group) and percutaneous vertebral body reduction fixator group (Ni-Ti fixator group). The vertebral height and peak load on the specimens were measured before and after the two kinds of operations, respectively, to compare the restoration of compression fractures. Results Compared with the control group, both the PKP and Ni-Ti fixator groups could significantly restore the collapse of the vertebral endplate. The vertebral height of the PKP group and Ni-Ti fixator group was raised from (2.01±0.21) and (2.00±0.18)cm before the operation to (2.27±0.18) and (2.31±0.17) cm after the operation, respectively. The peak loads on the vertebrae for the PKP and Ni-Ti fixator group were (2 880.75±126.17) and (2 888.00±144.69) N, respectively, with no statistical differences found in between, while those for the control group were (2 017.17±163.71) N. Conclusions The Ni-Ti shape memory alloy vertebral reduction fixator can effectively restore the collapse of the vertebral endplate, maintaining the immediate biomechanical stability of the vertebrae, and reducing the adverse reactions due to the injection of polymethyl methacrylate (PMMA) cement during percutaneous kyphoplasty.

18.
Journal of Medical Biomechanics ; (6): E562-E566, 2012.
Article Dans Chinois | WPRIM | ID: wpr-803909

Résumé

Objective To evaluate the influence from deformation history of arch-wires on its orthodontic force. MethodsA finite element model including brackets and arch-wires in free status was built, and the position of brackets under clinical condition was obtained through laser scanning on the plaster dental model. Based on the finite element method, the brackets were moved to the clinical position through two different movement pathways, using a thermal-mechanical shape-memory-alloy model of arch-wires. The orthodontic force obtained from the two pathways were then compared and analyzed. Results The relative differences in the orthodontic force obtained from the two pathways were significant, with a range from 0.3 to 8.0. The influence of deformation pathway on the orthodontic force was reduced if the arch-wire was first overloaded and then unloaded to the clinical condition,but reduction of the orthodontic force varied at different positions of arch-wires, and the relative differences might increase at certain positions. Conclusions The deformation history of arch-wires has some direct relation with the orthodontic force produced on the NiTi shape-memory-alloy, and the evaluation on the orthodontic force should trace its deformation history.

19.
Chinese Journal of Orthopaedic Trauma ; (12): 758-761, 2011.
Article Dans Chinois | WPRIM | ID: wpr-421126

Résumé

Objective To explore the effect of persistent stress on the ultrastructure of cancellous bone in the process of fracture healing.Method A transverse osteotomy on both sides of the femoral tuberositas was performed in 20 adult dogs. One side was fixed with a self-designed tuberositas memofy-pressure connector (TMC) which was made of NiTi shape memory alloy, and the other with compressive steel-wire (SW) cerclage.Five animals in each group were sacrificed at 2, 4, 8, 12 weeks after operation and observed under transmission electron microscope.Results The fracture healing was accelerated in the TMC group.The osteoblasts, chondroblasts and collagen fibers at the fracture sites showed significantly different morphology between the 2 groups at every observation time.Most cells and collagen fibers in the TMC group grew along the same direction as the stress, but those in the SW group grew in disorder.Both the number and functional activity of the osteoblasts and chondroblasts were higher in the TMC group than in the SW group.Conclusion Persistent stress can enhance healing and bone reconstruction following a cancellous bone fracture.

20.
Rev. colomb. biotecnol ; 12(2): 41-54, dic. 2010. ilus
Article Dans Espagnol | LILACS | ID: lil-590773

Résumé

En México, la mortalidad debido a enfermedades bronco-respiratorias se ubica en el sexto lugar según datos estadísticos dados por el Instituto Nacional de Enfermedades Respiratorias (INER). Esto genera la necesidad de incrementar la eficiencia en la aplicación de los tratamientos usados para este tipo de patología. Algunos de los métodos utilizados con mayor frecuencia para el tratamiento de estas dolencias hacen uso de micro dispositivos, también conocidos como válvulas endobronquiales. Este es un sistema alternativo que evita cirugías invasivas y logra prolongar e incrementar la calidad de vida de los pacientes. En este trabajo se presenta el análisis del desempeño de la válvula IBV®. Para el desarrollo del estudio numérico se determinaron las dimensiones y propiedades mecánicas del modelo a partir de catálogos del fabricante. Se desarrolló un modelo para el cual se consideraron las propiedades del Nitinol® y Silastic®. Asimismo, se propusieron dos condiciones de operación para la válvula, una anclada en el bronquio y la otra en la condición en la que se encuentra plegada dentro del broncoscopio. Se utilizó el Método del elemento finito (MEF) para simular las condiciones de trabajo de la válvula. Los resultados encontrados muestran el funcionamiento estructural y el nivel de los esfuerzos generados en el implante durante el ciclo de respiración forzada del individuo. Además, se proporcionan las bases para generar un nuevo dispositivo que pueda emular el funcionamiento de este tipo de implantes y aumente la eficiencia del tratamiento de dicha patología.


In Mexico, the mortality rate due to bronchial respiratory sickness is placed in the sixth position, according to statistics from the National Institute of Breathing Sickness (INER), so it is convenient to increment the efficiency of treatments for those pathologies. The intrabronchial valve is a recommended alternative method; being it main objective to avoid invasive surgery and increase the time and quality of patient´s life. Within this work a biomechanical analysis of an IBV® valve is carried out. Regarding the numerical analysis, the dimensions and mechanical properties of the valve were proposed based on catalogues published by the manufacturer as more reliable information was not available in the open literature. As a result, a new model was developed in which both materials Nitinol® and Silastic® are considered as the main valve materials. The proposed working conditions assume that the valve is implanted in folded form at the bronchus and then anchored when it is unfolded. Finite Element Method (FEM) was used to simulate the proposed working conditions. Results obtained show the structural performance and the level of stress generated in the implant during the breathing cycle. In addition, it provides the knowledge to generate a new device that could emulate the performance of these implants and develop a more efficient treatment this disease.


Sujets)
Tumeurs du poumon/chirurgie , Tumeurs du poumon/diagnostic , Tumeurs du poumon/soins infirmiers , Tumeurs du poumon/épidémiologie , Tumeurs du poumon/physiopathologie , Tumeurs du poumon/induit chimiquement , Tumeurs du poumon/anatomopathologie , Tumeurs du poumon/composition chimique , Tumeurs du poumon/traitement médicamenteux , Valves cardiaques/malformations , Valves cardiaques/physiologie , Valves cardiaques/immunologie , Valves cardiaques/anatomopathologie , Valves cardiaques/composition chimique
SÉLECTION CITATIONS
Détails de la recherche