Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 3 de 3
Filtre
Ajouter des filtres








Gamme d'année
1.
Journal of Public Health and Preventive Medicine ; (6): 74-78, 2024.
Article Dans Chinois | WPRIM | ID: wpr-1005910

Résumé

Objective To investigate the potential effect and mechanism of curcumin in inhibiting synaptic injury in the cortex of rats with cerebral ischemia-reperfusion. Methods Sprague-Dawley rats were divided into sham-operated group, model group, low-dose curcumin (50 mg/kg) group, and high-dose curcumin (100 mg/kg) group. A model of middle cerebral artery occlusion for 2 hours and reperfusion for 24 hours was constructed, and curcumin was administered. Based on the neurological function score, the effects of curcumin on cerebral infarct volume, synaptic ultrastructure changes, inflammatory cell infiltration, and the expression of NLRP3, Caspase-1, Synapsin1, and CAMKⅡ were observed after the end of the animal treatment. Results The neurological function scores were 0, 3.25±0.43, 2.50±0.50, and 1.50±0.50 for the sham-operated group, model group, low-dose curcumin group, and high-dose curcumin group, respectively. The percentage of cerebral infarct volume was 0, (38.89±2.21)%, (33.48±1.77)%, and (23.69±2.19)%, respectively. Compared with the sham operation group, the model group had severe synaptic ultrastructure damage, extensive inflammatory cell infiltration, significantly increased expression of Caspase-1 and NLRP3 (P < 0.5), and significantly decreased expression of Synapsin1 and CAMKⅡ (P < 0.5). Curcumin treatment significantly inhibited synaptic damage, reduced inflammatory cell infiltration, decreased the expression of Caspase-1 and NLRP3 (P < 0.5), and increased the expression of Synapsin1 and CAMKII (P < 0.5), when compared with the model group. Conclusion Ischemia-reperfusion-mediated synaptic injury in rat brain triggers an inflammatory response in cortical nerve cells, and curcumin alleviates synaptic damage and reduces brain injury by inhibiting inflammatory factor levels.

2.
Journal of Pharmaceutical Practice ; (6): 529-533, 2021.
Article Dans Chinois | WPRIM | ID: wpr-904754

Résumé

Objective To investigate the effects of ephedrine on the expression levels of brain-derived neurotropic factor (BDNF) and postsynaptic density protein 95 (PSD95) and synapsin1 in PC12 cells, and to explore the mechanism of ephedrine cytotoxicity on PC12. Methods After PC12 cells were treated with different concentration of ephedrine, the cell survival rate was measured by the methylthiazolyldiphenyl-tetrazolium bromide (MTT) assay. The morphology changes of PC12 cells were observed by an inverted microscope. Western blot was used to detect the protein expression levels of BDNF, PSD95 and synapsin1 in PC12 cells. Results Ephedrine decreased the viability of PC12 cell in a concentration-dependent manner,with an IC25 and IC50 of 0.536 mmol and 2.8 mmol, respectively, for PC12 cell death. As ephedrine concentration increased, PC12 cells became smaller in size, with blurred boundary blurred, reduced synapses and shorter axon lengths. The expression levels of BDNF and PSD95 increased significantly. Meanwhile the expression level of synapsin1 decreased. Conclusion The mechanism of ephedrine cytotoxicity on PC12 may be related to the expression levels of BDNF, PSD95 and synapsin1.

3.
Experimental & Molecular Medicine ; : e29-2013.
Article Dans Anglais | WPRIM | ID: wpr-74491

Résumé

O-linked N-acetylglucosamine (O-GlcNAc) represents a key regulatory post-translational modification (PTM) that is reversible and often reciprocal with phosphorylation of serine and threonine at the same or nearby residues. Although recent technical advances in O-GlcNAc site-mapping methods combined with mass spectrometry (MS) techniques have facilitated study of the fundamental roles of O-GlcNAcylation in cellular processes, an efficient technique for examining the dynamic, reciprocal relationships between O-GlcNAcylation and phosphorylation is needed to provide greater insights into the regulatory functions of O-GlcNAcylation. Here, we describe a strategy for selectively identifying both O-GlcNAc- and phospho-modified sites. This strategy involves metal affinity separation of O-GlcNAcylated and phosphorylated peptides, beta-elimination of O-GlcNAcyl or phosphoryl functional groups from the separated peptides followed by dithiothreitol (DTT) conjugation (BEMAD), affinity purification of DTT-conjugated peptides using thiol affinity chromatography, and identification of formerly O-GlcNAcylated or phosphorylated peptides by MS. The combined metal affinity separation and BEMAD approach allows selective enrichment of O-GlcNAcylated peptides over phosphorylated counterparts. Using this approach with mouse brain synaptosomes, we identified the serine residue at 605 of the synapsin-1 peptide, 603QASQAGPGPR612, and the serine residue at 692 of the tau peptide, 688SPVVSGDTSPR698, which were found to be potential reciprocal O-GlcNAcylation and phosphorylation sites. These results demonstrate that our strategy enables mapping of the reciprocal site occupancy of O-GlcNAcylation and phosphorylation of proteins, which permits the assessment of cross-talk between these two PTMs and their regulatory roles.


Sujets)
Animaux , Souris , Acétyl-glucosamine/métabolisme , Séquence d'acides aminés , Encéphale/métabolisme , Chromatographie d'affinité , Glycosylation , Données de séquences moléculaires , Peptides/isolement et purification , Phosphorylation , Synapsine/composition chimique , Synaptosomes/métabolisme , Spectrométrie de masse en tandem , Protéines tau/composition chimique
SÉLECTION CITATIONS
Détails de la recherche