Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 906
Filtre
1.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 20-28, 2024.
Article Dans Chinois | WPRIM | ID: wpr-1006551

Résumé

ObjectiveMolecular docking and animal experiments were employed to explore the protective effect and mechanism of Da Chengqitang (DCQD) on intestinal barrier in septic mice. MethodText mining method was used to screen the active ingredients in DCQD. AutoDock Tools and Discovery Studio were used to study the interactions of active components with the core target proteins [claudin-1, tumor necrosis factor (TNF)-α, interleukin (IL)-6, endogenous antimicrobial peptide mCRAMP, Toll-like receptor 4 (TLR4), and myeloid differentiation primary response gene 88 (MyD88)] in sepsis. Fifty C57BL/6 mice were randomized into sham, model, low- and high-dose (4 g∙kg-1 and 8 g∙kg-1) DCQD, and ulinastatin groups (n=10). Before, during, and after the day of modeling surgery, each group was administrated with corresponding drugs. The mice in other groups except the model group were subjected to modeling by cecal ligation and puncture. Enzyme-linked immunosorbent assay (ELISA) was used measure the serum level of D-lactic acid to assess intestinal mucosa permeability. Hematoxylin-eosin staining was employed to observe the histopathological changes in the ileum and assess the intestinal mucosal damage and inflammatory infiltration. Western blotting was employed to determine the expression levels of tight junction proteins claudin-1 and occludin in the ileal tissue, which were indicative of the bowel barrier function. The TNF-α and IL-6 levels were measured by ELISA to assess the intestinal inflammation. The expression of mCRAMP in the ileal tissue was observed by immunohistochemistry. The mRNA levels of mCRAMP, TLR4, and MyD88 in mouse ileal tissue were determined by Real-time polymerase chain reaction, on the basis of which the mechanism of DCQD in protecting the intestinal barrier of septic mice was explored. ResultMolecular docking results showed that most of the 10 active ingredients of DCQD that were screened out by text mining could bind to sepsis targets by van der Waals force, hydrogen bonding, and other conjugated systems. The results of animal experiments showed that compared with the model group, low- or high-dose DCQD lowered the D-lactic acid level in the serum (P<0.01), alleviated damage to the ileal tissue and mucosal edema, protected the small intestine villus integrity, reduced inflammatory cell infiltration, promoted the expression of claudin-1 (P<0.01), lowered the IL-6 level (P<0.01), up-regulated the mRNA and protein levels of mCRAMP (P<0.01), and down-regulated the mRNA and protein levels of TLR4 and MyD88 (P<0.01) in the ileal tissue. In addition, high-dose DCQD lowered the TNF-α level and promoted the expression of occludin in the ileum tissue (P<0.01), and low-dose DCQD up-regulated the protein level of occludin in the ileum tissue (P<0.05). ConclusionDCQD has a protective effect on intestinal barrier in septic mice. It can reduce intestinal inflammation, repair intestinal mucosal damage, improve the tight junction protein level, and reduce intestinal mucosal permeability by up-regulating the mRNA and protein levels of mCRAMP and the down-regulating the expression of genes in the TLR4/MyD88 pathway.

2.
Journal of Clinical Hepatology ; (12): 343-350, 2024.
Article Dans Chinois | WPRIM | ID: wpr-1007250

Résumé

ObjectiveTo investigate the therapeutic effect of Qingjie Huagong decoction (QJHGD) on a mouse model of severe acute pancreatitis (SAP) and the mechanism of action of QJHGD against inflammatory response. MethodsA total of 36 male C57BL/6J mice were randomly divided into blank group, model group, Western medicine group (ulinastatin), and low-, middle-, and high-dose QJHGD groups, with 6 mice in each group. All mice except those in the blank group were given 5% sodium taurocholate by retrograde pancreaticobiliary injection to establish a model of SAP. After modeling, the mice in the low-, middle-, and high-dose groups were given QJHGD (1, 2, and 4 g/kg, respectively) by gavage, and those in the Western medicine group were given intraperitoneal injection of ulinastatin (5×104 U/kg), for 7 days in total. HE staining was used to observe the histopathological changes of the pancreas; ELISA was used to measure the levels of α-amylase, lipase, interleukin-1β (IL-1β), interleukin-6 (IL-6), interleukin-8 (IL-8), interleukin-18 (IL-18), and tumor necrosis factor-α (TNF-α) in mice; RT-qPCR was used to measure the mRNA expression levels of NOD-like receptor protein3 (NLRP3), Toll-like receptor 4 (TLR4), and nuclear factor-kappa B (NF-κB) in pancreatic tissue; immunohistochemistry was used to measure the positive expression rates of NLRP3, TLR4, and NF-κB in pancreatic tissue; Western blot was used to measure the protein expression levels of NLRP3, TLR4, NF-κB, IL-1β, and IL-6. An analysis of variance was used for comparison of continuous data between multiple groups, and the least significant difference t-test was used for further comparison between two groups. ResultsCompared with the blank group, the model group had diffuse destruction of pancreatic tissue structure, focal dilatation of pancreatic lobular septum, pancreatic acinar atrophy, and massive inflammatory cell infiltration, as well as significant increases in the content of α-amylase, lipase, IL-1β, IL-6, IL-8, IL-18, and TNF-α (all P<0.05), the mRNA expression levels and positive expression rates of NLRP3, TLR4, and NF-κB (all P<0.05), and the protein expression levels of NLRP3, TLR4, NF-κB, IL-1β, and IL-6 (all P<0.05). Compared with the model group, the low-, middle-, and high-dose QJHGD groups and the Western medicine group had slightly tighter and more intact structure of pancreatic tissue, ordered arrangement of pancreatic acinar cells, a small amount of inflammatory cell infiltration, and hemorrhagic foci of pancreatic lobules, as well as significant reductions in the content of α-amylase, lipase, IL-1β, IL-6, IL-8, IL-18, and TNF-α (all P<0.05), the mRNA expression levels and positive expression rates of NLRP3, TLR4, and NF-κB (all P<0.05), and the protein expression levels of NLRP3, TLR4, NF-κB, IL-1β, and IL-6 (all P<0.05). ConclusionQJHGD may exert a protective effect on the pancreatic tissue of SAP mice by inhibiting the activation of NLRP3/TLR4/NF-κB signaling pathway-related proteins, reducing the release of inflammatory mediators, and preventing the enhancement of inflammatory cascade response.

3.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 64-70, 2024.
Article Dans Chinois | WPRIM | ID: wpr-1003409

Résumé

ObjectiveTo explore the protective effect and mechanism of Zingiberis Rhizoma Recens alcohol extract on lipopolysaccharide (LPS)-induced acute lung injury in mice. MethodBalb/c mice were randomly divided into normal group, model group, dexamethasone group, and low- and high-dose Zingiberis Rhizoma Recens groups. Mice in the normal group were instilled with normal saline through the nose, and the other groups were instilled with normal saline containing LPS (50 μg). After 30 minutes of modeling, the dexamethasone group was gavaged with 5 mg·kg-1 of dexamethasone acetate solution, the low- and high-dose Zingiberis Rhizoma Recens groups were gavaged with different doses of (7, 14 g·kg-1) of Zingiberis Rhizoma Recens alcohol extract, and the normal group and the model group were gavaged with the same volume of water. After 24 hours of modeling, the total number of white blood cells in bronchoalceolar lavage fluid (BALF) was detected by cell counter, and the levels of the inflammatory factors including tumor necrosis factor (TNF)-α, interleukin (IL)-1β, IL-6, and superoxide dismutase (SOD), and myeloperoxidase (MPO) was detected by enzyme-linked immunosorbent assay (ELISA). Haematoxylin-eosin (HE) staining method was used to observe the pathological changes of lung tissue in each group, and the Western blot was used to detect the protein expression of nuclear transcription factor (NF)-κB p65, phosphorylation (p)-NF-κB p65, and Toll-like receptor 4 (TLR4) in lung tissue. ResultCompared with the normal group, the white blood cell count in BALF and the levels of TNF-α, IL-1β, IL-6, and MPO in the model group was increased (P<0.01), and the level of SOD was decreased (P<0.05). Pathological damage of lung tissue was obvious, and the protein expression of NF-κB p65, p-NF-κB p65, and TLR4 in lung tissue was increased (P<0.01). Compared with the model group, the white blood cell count in BALF and the levels of TNF-α, IL-1β, IL-6, and MPO in the treatment group was decreased (P<0.05,P<0.01), and the level of SOD was increased (P<0.05,P<0.01). Pathological damage of lung tissue was alleviated, and the protein expression of NF-κB p65, p-NF-κB p65, and TLR4 in lung tissue was decreased (P<0.01). ConclusionZingiberis Rhizoma Recens alcohol extract may play a protective role in LPS-induced acute lung injury in mice by inhibiting the TLR4/NF-κB signaling pathway.

4.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 225-235, 2024.
Article Dans Chinois | WPRIM | ID: wpr-1016483

Résumé

Parkinson's disease (PD) is a common neurological degenerative disease in the middle-aged and elderly, characterized by pathological changes of progressive degeneration of dopaminergic neurons in the substantia nigra and Lewy body formation, with high prevalence and long course of disease. The drug is mainly used to treat PD in western medicine, and the early curative effect is remarkable. However, with the progression of the disease and the long-term use of the drug, the efficacy will be significantly reduced, or there may be sports complications, and the long-term efficacy is not good. As a traditional medical system, traditional Chinese medicine has a unique understanding of PD. Traditional Chinese medicine plays an important role in the treatment of PD, which is natural, mild, safe, and effective, and it can cooperate with western medicine to enhance its efficacy and reduce the adverse reactions of western medicine. The pathogenesis of PD is complex, involving multiple levels such as mitochondrial dysfunction and apoptosis. Neuroinflammation is also involved in the progressive degeneration of dopaminergic neurons in PD. The Toll-like receptor 4 (TLR4)/nuclear factor-κB (NF-κB) signaling pathway is a classic inflammatory pathway, and its expression changes play an important role in the occurrence and development of inflammatory response in the body. In recent years, the research on this pathway in TCM is increasing. This paper summarized the literature of traditional Chinese and western medicine in the past 10 years and reviewed the relevant mechanism of TCM regulation of TLR4/NF-κB pathway in the treatment of PD from the aspects of TCM monomer, compound, and other TCM therapies, so as to provide some references for the search for new targets of drug therapy and gene therapy and the in-depth study of TCM prevention and treatment of PD.

5.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 29-36, 2024.
Article Dans Chinois | WPRIM | ID: wpr-1016459

Résumé

ObjectiveTo investigate the effects of Tongluo Juanbi granules on chondrocyte apoptosis and Toll-like receptor 4 (TLR4)/myeloid differentiation factor 88 (MyD88)/nuclear factor-κB (NF-κB) signaling pathway of rabbits with knee osteoarthritis (KOA) and study the mechanism of Tongluo Juanbi granules in the prevention and treatment of KOA. MethodThirty New Zealand rabbits were randomly assigned to the following five groups (n=6): sham group, model group, low-dose and high-dose groups of Tongluo Juanbi granules (4.1 and 8.2 g·kg-1·d-1), and celecoxib group (10.9 mg·kg-1·d-1). The KOA model was established by destabilization of the medial meniscus (DMM) for six weeks. Six weeks after the modeling, the drug was given once a day for eight weeks. The pathological changes of cartilago articularis were observed by hematoxylin-eosin (HE) staining and Safranin O-Fast Green staining. Terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) staining was performed to detect chondrocyte apoptosis. Enzyme-linked immunosorbent assay (ELISA) was used to detect the contents of interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α) in synovial fluid. The mRNA and protein expression levels of genes related to the TLR4/MyD88/NF-κB signaling pathway were detected by real-time fluorescence quantitative polymerase chain reaction (Real-time PCR) and Western blot, respectively. ResultCompared with the sham group, the cartilago articularis of the model group significantly degenerated. Mankin's score was increased (P<0.01), and the contents of IL-1β and TNF-α in synovial fluid were increased (P<0.01). The number of apoptosis of chondrocytes was increased (P<0.01). The mRNA and protein expressions of TLR4, MyD88, and NF-κB p65 in cartilage tissue were up-regulated (P<0.01), while the mRNA and protein expressions of Bcl-2 were down-regulated (P<0.01). Compared with the model group, chondrocyte degeneration in both low-dose and high-dose groups of Tongluo Juanbi granules was improved, and Mankin's score was decreased (P<0.01). The contents of IL-1β and TNF-α were decreased (P<0.01), and the number of apoptosis of chondrocytes was decreased (P<0.01). The mRNA and protein expressions of TLR4, MyD88, and NF-κB p65 in cartilage tissue were down-regulated (P<0.01), while the mRNA and protein expressions of Bcl-2 were up-regulated (P<0.01). In addition, in the above observation indicators, the high-dose group of Tongluo Juanbi granules was significantly superior to the low-dose group of Tongluo Juanbi granules. ConclusionTongluo Juanbi granules could inhibit chondrocyte apoptosis in rabbits with KOA and improve cartilage degeneration, which may be related to inhibiting inflammatory responses mediated by TLR4/MyD88/NF-κB signaling pathway.

6.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 263-271, 2024.
Article Dans Chinois | WPRIM | ID: wpr-1013364

Résumé

Acute pancreatitis (AP) is one of the most clinically common acute digestive disorders characterized by quick onset,rapid progression,severe condition,and high mortality. If the disease is not timely intervened in the early stage,it can develop into severe AP in the later stage,which damages the long-term quality of life and brings serious economic burden to patients and their families. However, the pathogenesis of this disease is complex and has not been fully explained. The generation and development of AP is closely related to many signaling pathways. Among them,Toll-like receptor 4(TLR4),as a transmembrane signal transduction receptor,can mediate immune response and inflammatory response,and play a key role in the occurrence and development of AP. Traditional Chinese medicine(TCM)can regulate the TLR4 signaling pathway with multiple targets,multiple effects,and multiple administration methods to inhibit inflammatory response,and effectively intervene in the progression of AP, which has gradually become a new craze for preventing and treating AP. Many studies have shown that TCM has obvious advantages in the prevention and treatment of AP. It can effectively treat AP by regulating TLR4 signaling pathway,strengthening immune resistance and defense,and inhibiting inflammatory response. Despite of the research progress,there is still a lack of comprehensive review on TCM regulation of TLR4 signaling pathway in the treatment of AP. Therefore,the literature on TCM regulation of TLR4 signaling pathway published in recent years was systematically reviewed and elaborated,aiming to provide new ideas for the treatment of AP and further drug development.

7.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 233-244, 2024.
Article Dans Chinois | WPRIM | ID: wpr-1012713

Résumé

Ulcerative colitis (UC) is a chronic inflammatory bowel disease primarily affecting the colon and rectum, with the typical symptoms such as abdominal pain, bloody diarrhea, and tenesmus. The pathogenesis of UC remains to be fully elucidated. The disease is prone to recurrence, seriously affecting the patients' quality of life. Conventional therapies for UC have limitations, including unsatisfactory clinical efficacy, lengthy courses, and adverse reactions. Therefore, there is an urgent need to explore new therapeutic agents. Peroxisome proliferator-activated receptor gamma (PPARγ), a ligand-dependent nuclear receptor protein that plays a crucial role in maintaining intestinal homeostasis, is closely associated with the onset and development of UC. Traditional Chinese medicine (TCM) has advantages such as multi-targeting and mild side effects in the treatment of UC. Recent studies have shown that TCM can exert the therapeutic effects on UC by modulating PPARγ. The TCM methods for regulating PPARγ include clearing heat, drying dampness, moving Qi, activating blood, resolving stasis, invigorating the spleen, warming the kidney, and treating with both tonification and elimination. On one hand, TCM directly activates PPARγ or mediates signaling pathways such as nuclear factor-κB (NF-κB), mitogen-activated protein kinase (MAPK), Toll-like receptor 4 (TLR4), and regulates helper T cell 17 (Th17)/regulatory T cell (Treg) balance to promote macrophage polarization from the pro-inflammatory M1 phenotype to the anti-inflammatory M2 phenotype, thereby inhibiting intestinal inflammation. On the other hand, TCM regulates the intestinal metabolism to activate PPARγ, lower the nitrate level, and maintain local hypoxia. In this way, it can restore the balance between specialized anaerobes and facultative anaerobes, thereby improving the gut microbiota and treating UC. This article summarizes the role of PPARγ in UC and reviews the research progress of TCM in treating UC by intervening in PPARγ in the last five years, aiming to give insights into the treatment and new drug development for UC.

8.
China Pharmacy ; (12): 407-412, 2024.
Article Dans Chinois | WPRIM | ID: wpr-1011319

Résumé

OBJECTIVE To investigate the improvement effect and potential mechanism of “Layers adjusting external application” paste on synovial fibrosis (SF) in rats with knee osteoarthritis (KOA). METHODS Male SD rats were randomly divided into sham operation group, KOA group and Layers adjusting external application group, with 8 rats in each group. KOA model was induced by the anterior cruciate ligament disruption method in KOA group and Layers adjusting external application group. Fourteen days after modeling, the Layers adjusting external application group was given “Layers adjusting external application” paste [Sanse powder (8 g for every 100 cm2), Compound sanhuang ointment (5 g for every 100 cm2)] on the knee joint, 8 h every day, for 28 d in total. After the last administration, the degree of synovitis and fibrosis in rats was observed, and Krenn scoring was performed in each group. The expressions of collagen Ⅰ, high mobility group protein B1 (HMGB1) and phosphorylated nuclear factor-κB p65 (p-NF-κB p65) were detected in the synovial membrane; the contents of interleukin-1β (IL- 1β), IL-6 and tumor necrosis factor-α (TNF-α) in serum as well as the expressions of fibrosis-related and HMGB1/Toll-like receptor 4 (TLR4)/NF-κB signaling pathway-related proteins and mRNA were detected in synovial tissue. RESULTS Compared with the sham operation group, the synovial lining cells in the KOA group showed significant proliferation and disordered arrangement, the inflammatory cell infiltration and collagen fiber deposition were obvious; the positive expressing cells of collagen Ⅰ, HMGB1 and p-NF-κB p65 were increased significantly; the contents of IL-1β, IL-6 and TNF-α in serum, the expressions of fibrosis-related protein (transforming growth factor-β, collagen Ⅰ, tissue inhibitor of metalloproteinase 1, α-smooth muscle actin) and their mRNA as well as theexpressions of HMGB1, TLR4 protein and their mRNA, the expressions of p-NF-κB p65 protein and NF-κB p65 mRNA were all increased significantly in synovial tissues of rats (P<0.01). Compared with the KOA group, the pathological changes in the synovial tissue of rats in Layers adjusting external application group were significantly improved, and the above quantitative indicators were significantly reversed (P<0.05 or P<0.01). CONCLUSIONS “Layers adjusting external application” paste could significantly improve SF in KOA rats, the mechanism of which may be associated with the inhibition of the activation of HMGB1/ TLR4/NF-κB signaling pathway.

9.
Article | IMSEAR | ID: sea-223534

Résumé

Background & objectives: Toll-like receptors (TLRs) are transmembrane proteins that recognize specific molecular patterns and activate downstream cytokine production usually for the eradication of invading pathogens. The objective of this study was to evaluate the genetic polymorphism of TLR2 Arg753Gln (rs 5743708) and soluble cytokines and TLR2 expression levels in malaria disease cases. Methods: The study included prospectively collected 2 ml blood samples from 153 individuals clinically suspected for malaria and confirmed by microscopy and RDT from Assam. Stratification of the study groups was done as healthy control (HC, n=150), uncomplicated malaria (UC-M, n=128) and severe malaria (SM, n=25). The PCR-restriction fragment length polymorphism (RFLP) method was applied for the analysis of TLR2 Arg753Gln polymorphism and following the ELISA for soluble serum TLR2 (sTLR2) and its associated downstream cytokines, viz. tumour necrosis factor (TNF)-? and interferon (IFN)-? levels. Results: Variation in TLR2 Arg753Gln gene showed no association with the susceptibility and the severity of malarial infection. Soluble TLR2 expression was significantly higher in uncomplicated malaria (UC-M) cases compared to healthy controls (P=0.045) and in terms of SM cases, the expression was also found to be higher in UC-M cases (P=0.078). The TNF-? expression was significantly higher in SM cases compared to both UC-M and control (P=0.003 and P=0.004). Similarly, significantly elevated expression of IFN-? was noted in SM cases compared to both UC-M (P=0.001) and healthy controls (P<0.001). Interpretation & conclusions: The present study suggests the association of deregulated TLR2 pathway that leads to the deleterious downstream immune response in the development of malarial pathogenicity.

10.
Braz. J. Anesth. (Impr.) ; 73(4): 441-445, 2023. graf
Article Dans Anglais | LILACS | ID: biblio-1447632

Résumé

Abstract Background Morphine is an analgesic agent used for cancer pain management. There have been recent concerns that the immunosuppressant properties of morphine can also promote cancer metastasis. Morphine is an agonist for toll like receptor 4 (TLR4) that has a dual role in cancer development. The promotor or inhibitor role of morphine in cancer progression remains controversial. We investigated the effects of morphine on migration and metastasis of melanoma cells through TLR4 activation. Methods Mouse melanoma cells (B16F10) were treated with only morphine (0, 0.1, 1, and 10 μM) or in combination with a TLR4 inhibitor (morphine10 μM +CLI-095 1μM) for either 12 or 24 hours. Migration of cells was analyzed by transwell migration assays. Twenty C57BL/6 male mice were inoculated with B16F10 cells via the left ventricle of the heart and then randomly divided into two groups (n = 10 each) that received either morphine (10 mg.kg−1, sub-q) or PBS injection for 21 days (control group). Animals were euthanized and their lungs removed for evaluation of metastatic nodules. Results Morphine (0.1, 1, and 10 μM) increased cell migration after 12 hours (p < 0.001) and after 24 hours of treatment with morphine (10 μM) (p < 0.001). Treatment with CLI-095 suppressed migration compared to cells treated with morphine alone (p < 0.001). Metastatic nodules in the morphine-treated group (64 nodules) were significantly higher than in the control group (40 nodules) (p < 0.05). Conclusion Morphine increases the migration and metastasis of mouse melanoma cells by activating TLR4.


Sujets)
Animaux , Mâle , Rats , Tumeurs du poumon/traitement médicamenteux , Tumeurs du poumon/secondaire , Mélanome/anatomopathologie , Morphinum/pharmacologie , Récepteur de type Toll-4
11.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 18-25, 2023.
Article Dans Chinois | WPRIM | ID: wpr-984579

Résumé

ObjectiveTo explore the mechanism of Buyang Huanwutang in regulating macrophage polarization based on the Toll-like receptor 4 (TLR4) / nuclear factor-κB (NF-κB) / nucleotide-binding oligomerization domain-like receptor 3 (NLRP3) pathway. MethodRAW264.7 macrophages were intervened with lipopolysaccharide (LPS) of different concentrations (0, 1.25, 2.5, 5, 10, 20, 40, and 80 mg·L-1) for 24 hours. Cell Counting Kit-8 (CCK-8) assay was used to determine the cell viability of RAW264.7 macrophages. The optimal concentration was chosen to establish an in vitro inflammation model induced by LPS. Cells were divided into a blank group (20% blank serum), a model group (20% blank serum + 10 mg·L-1 LPS), a model control group (20% FBS + 10 mg·L-1 LPS), low-, medium-, and high-dose (5%, 10%, and 20%) Buyang Huanwutang-containing serum groups, a high-dose (20%) Buyang Huanwutang combined with NLRP3 inhibitor MCC950 (50 μmol·L-1) group, a high-dose (20%) Buyang Huanwutang combined with reactive oxygen species (ROS) inhibitor NAC (10 μmol·L-1) group, and a high-dose (20%) Buyang Huanwutang combined with NF-κB inhibitor PDTC (10 μmol·L-1) group. Enzyme-linked immunosorbent assay (ELISA) was used to detect the expression of interleukin-1β (IL-1β), interleukin-18 (IL-18), and tumor necrosis factor-α (TNF-α) in RAW264.7 macrophages. Flow cytometry was employed to measure ROS levels in macrophages. Western blot was used to determine the protein expression of M1-type macrophage-related factors inducible nitric oxide synthase (iNOS) and TNF-α, M2-type macrophage-related factors arginase-1 (Arg-1) and interleukin-10 (IL-10), as well as the proteins in the TLR4/NF-κB/NLRP3 pathway. ResultCCK-8 results indicated that under 10 mg·L-1 LPS stimulation, RAW264.7 macrophages exhibited the highest cell viability (P<0.01). Compared with the blank group, the model group showed significantly increased levels of IL-1β, IL-18, and TNF-α (P<0.05,P<0.01), increased ROS expression (P<0.05,P<0.01), increased protein expression of M1-type macrophage factors iNOS and TNF-α (P<0.01), decreased protein expression of M2-type macrophage factors Arg-1 and IL-10 (P<0.05,P<0.01), and upregulated expression levels of TLR4, myeloid differentiation factor 88 (MyD88), phosphorylated inhibitor of NF-κB (p-IκB)/NF-κB inhibitor (IκB), phosphorylated NF-κB (p-NF-κB) p65/NF-κB p65, NLRP3, apoptosis-associated speck-like protein containing a CARD (ASC), and pro-Caspase-1 (P<0.05, P<0.01). Compared with the model group, all Buyang Huanwutang-treated groups and inhibitor groups significantly reduced levels of IL-1β, IL-18, and TNF-α (P<0.01), suppressed the expression of inflammatory factors in RAW264.7 macrophages, decreased cellular ROS expression levels (P<0.01), downregulated M1-type macrophages iNOS and TNF-α protein expression (P<0.01), upregulated M2-type macrophages Arg-1 and IL-10 protein expression (P<0.01), and lowered protein expression levels of TLR4, MyD88, p-IκB/IκB, p-NF-κB p65/NF-κB p65, NLRP3, ASC, and pro-Caspase-1 (P<0.05, P<0.01). ConclusionBuyang Huanwutang can improve macrophage inflammation, potentially by reducing macrophage ROS levels, inhibiting RAW264.7 macrophage polarization, and downregulating the protein expression levels of the TLR4/NF-κB/NLRP3 pathway.

12.
Chinese Journal of Microbiology and Immunology ; (12): 130-136, 2023.
Article Dans Chinois | WPRIM | ID: wpr-995265

Résumé

Objective:To investigate whether salidroside (SAL) improves lung tissue injury in rats with severe pneumonia (SP) through mediating toll-like receptor 4/nuclear transcription factor-κB/NOD-like receptor protein 3 (TLR4/NF-κB/NLRP3) signaling pathway.Methods:Seventy-five Wistar rats were used in this study. Fifteen of them were randomly selected as the sham operation group, and the others were induced by endotracheal infusion of Klebsiella pneumoniae ( Kp) suspension to construct a rat model of SP. After modeling, the rats were randomly divided into four groups with 15 rats in each group: model group, low-dose SAL group (30 mg/kg), high-dose SAL group (60 mg/kg) and dexamethasone (DXMS, 15 mg/kg) group. The sham operation group and the model group were given the same amount of normal saline for seven consecutive days. The wet-dry weight ratio (W/D) of lung tissues in each group was detected. HE and TUNEL staining methods were used to observe the morphology of lung tissues and cell apoptosis. The levels of TNF-α, IL-1β, IL-6, IL-18 and IL-10 in bronchoalveolar lavage fluid (BALF) were detected by ELISA. The expression of TLR4, myeloid differentiation factor (MyD88), NF-κBp65, phosphorylated NF-κBp65 (p-NF-κBp65) and NLRP3 at protein level in lung tissues was detected by Western blot. Results:The rat model of SP was successfully constructed by endotracheal infusion of Kp suspension. Compared with the sham operation group, the model group showed more severe edema of lung tissues, increased W/D value ( P<0.05), loose and incomplete alveolar structure, edema of alveolar wall and thickened alveolar wall, massive inflammatory cell infiltration, increased apoptosis rate as well as higher levels of TNF-α, IL-1β, IL-6 and IL-18 and lower lover of IL-10 in BALF. Moreover, the relative expression of TLR4, MyD88, NF-κBp65, p-NF-κBp65 and NLRP3 at protein level in lung tissues was increased in the model group ( P<0.05). Gradually improved pathological injury of lung tissues, decreased W/D value ( P<0.05), recovered alveolar structure, reduced alveolar wall edema and decreased cell apoptosis rate were observed in the low-dose and high-dose SAL groups as well as the DXMS group as compared with those of the model group. Besides, the three groups also showed decreased levels of TNF-α, IL-1β, IL-6 and IL-18 and increased level of IL-10 in BALF, and inhibited expression of TLR4, MyD88, NF-κBp65, p-NF-κBp65 and NLRP3 at protein level in lung tissues ( P<0.05). DXMS performed better in improving lung injury in rats with SP, followed by high and low doses of SAL ( P<0.05). Conclusions:SAL could reduce cell apoptosis and improve the Kp-induced lung injury in rats. The mechanism might be related to the blockage of TLR4/NF-κB/NLRP3 signaling pathway activation and inhibition of inflammatory factor expression.

13.
Chinese Journal of Anesthesiology ; (12): 176-180, 2023.
Article Dans Chinois | WPRIM | ID: wpr-994170

Résumé

Objective:To evaluate the role of Toll-like receptor 4 (TLR4)/nuclear transcription factor κB (NF-κB) signaling pathway in long-term cognitive impairment induced by multiple exposures to sevoflurane anesthesia in neonatal rats.Methods:Seventy-five SPF healthy newborn Sprague-Dawley rats of either sex, aged 6 days, weighing 12-20 g, were divided into 3 groups ( n=25 each) using a random number table method: control group (group C), multiple exposures to sevoflurane anesthesia group (group S) and TLR4 inhibitor plus multiple exposures to sevoflurane anesthesia group (group I+ S). The rats in group S and group I inhaled 3% sevoflurane for 2 h at 6, 7 and 8 days after birth. TLR4 inhibitor TAK-242 10 mg/kg was intraperitoneally injected before each exposure to sevoflurane in group I, and the equal volume of normal saline was given instead in the other two groups. The spontaneous activity was evaluated by open field test on day 29 after birth, and the cognitive function was assessed by Morris water maze test on days 30-34 after birth. After the behavioral test, the blood samples from the abdominal aorta were collected, and then the rats were sacrificed under deep anesthesia to isolate the hippocampal tissues for measurement of the levels of S100β and neuron-specific enolase (NSE) in serum and hippocampal interleukin-1β (IL-1β), IL-6 and tumor necrosis factor α (TNF-α) (by enzyme-linked immunosorbent assay), expression of TLR4, NF-κB p65 and phosphorylated NF-κB p65 (p-NF-κB p65) (by Western blot) and for microscopic examination of the pathological changes of hippocampal CA1 region after HE staining. Results:Compared with group C, the escape latency was significantly prolonged, the number of crossing the original platform was reduced, the TLR4 expression was up-regulated, the ratio of p-NF-κB p65/NF-κB p65 was increased, the levels of serum S100β protein and NSE and hippocampal IL-1β, IL-6 and TNF-α were increased ( P<0.05), and the pathological changes in the hippocampal CA1 region were aggravated in group S. Compared with group S, the escape latency was significantly shortened, the number of crossing the original platform was increased, TLR4 expression was down-regulated, the ratio of p-NF-κB p65/NF-κB p65 was decreased, the levels of S100β and NSE in serum and hippocampal IL-1β, IL-6 and TNF-α were decreased ( P<0.05), and the pathological changes in hippocampal CA1 area were significantly attenuated in group P. Conclusions:The mechanism by which multiple exposures to sevoflurane anesthesia induces long-term cognitive impairment is related to activation of TLR4/NF-κB signaling pathway and increase in hippocampal inflammatory responses in neonatal rats.

14.
Chinese Journal of Orthopaedics ; (12): 849-857, 2023.
Article Dans Chinois | WPRIM | ID: wpr-993512

Résumé

Objective:To prepare cell membrane-coated nanovesicles with targeted delivery of toll-like receptor 4 (TLR4) agonist, and to explore the effect and mechanism of inducing the polarization of tumor-associated macrophages (TAMs) and treating osteosarcoma.Methods:TLR4 agonist loaded nanovesicles were prepared by polycarbonate membrane extruders. The morphology and size of nanovesicles were detected by transmission electron microscopy (TEM) and particle size analyzer, and the drug loading performance of the nanovesicles to TLR4 agonist was investigated. TLR4 agonist loaded nanovesicles were co-incubated with macrophages in vitro, and the targeting ability of nanovesicles to macrophages and its role in regulating the function of macrophages were detected by confocal fluorescence microscopy. In vitro experiments, a cell co-culture system was established. After the upper layer macrophages were treated by the control group, the TLR4 agonist group and the TLR4 agonist loaded nanovesicle group, the lower layer osteosarcoma cells were collected for CCK-8 and cloning formation experiments to evaluate their effects on the proliferation and migration of osteosarcoma cells. In vivo experiments, an osteosarcoma subcutaneous graft tumor model was established, and mice were randomly divided into the control group, the TLR4 agonist group, and the TLR4 agonist loaded nanovesicle group. After the treatment by caudal vein, the tumor targeting ability of nanovesicles in vivo was explored through the in vivo imaging system, and the volume of tumor tissue was continuously detected. The subcutaneous tumors were stained to detect macrophage-related markers, and their effect on the polarization of macrophages was evaluated. The TUNEL fluorescence of tumor tissues was further detected.Results:TEM showed the round shape of TLR4 agonist loaded nanovesicle and the size was about 200 nm. The co-incubation of 0.05 mg TLR4 agonist with 0.1 mg nanovesicles was the best condition for the preparation of drug-loaded nanovesicles. The drug loading efficiency was about 35% and the drug loading content was about 0.11 mg/mg. The membrane-coated nanovesicles could efficiently load and deliver TLR4 agonist. TLR4 agonist loaded nanovesicles were labeled with DiD red fluorescent dye, and then the labeled nanovesicles were co-incubated with macrophages. It was found by confocal fluorescence microscopy that DiD labeled TLR4 agonist loaded nanovesicles significantly accumulated in macrophages, and the fluorescence of M1-type macrophage marker (iNOS) was significantly enhanced, which could induce M1 polarization of macrophages. In vitro experiments, it was found that the number of osteosarcoma cells in the TLR4 agonist loaded nanovesicle group was significantly reduced under the light microscope, and the cell morphology was wrinkled and rounded. CCK-8 and cloning formation experiments showed that the proliferation and migration ability of osteosarcoma cells in the TLR4 agonist loaded nanovesicle group was significantly reduced compared with the control group and the TLR4 agonist group. A subcutaneous graft tumor model was established. In vivo imaging experiments showed that TLR4 agonist loaded nanovesicles locally accumulated in tumor tissues in vivo, but were not distributed in other organs. The growth of tumor tissue was significantly inhibited in the TLR4 agonist loaded nanovesicle group. Moreover, the fluorescence of M1-type macrophage marker (iNOS) was significantly enhanced (relative fluorescence intensity: 3.27±0.19), while the fluorescence of M2-type macrophage marker (CD163) was significantly decreased (relative fluorescence intensity: 0.14±0.04). TUNEL fluorescence staining showed that the apoptosis level of osteosarcoma cells was significantly increased (relative fluorescence intensity: 9.53±0.21).Conclusion:Membrane-coated nanovesicles could targeted deliver TLR4 agonist to osteosarcoma, induce TAMspolarization, remodel tumor immunosuppressive microenvironment, promote cell apoptosis, and effectively kill osteosarcoma.

15.
Braz. j. biol ; 83: e244123, 2023. tab
Article Dans Anglais | LILACS, VETINDEX | ID: biblio-1278562

Résumé

Abstract Toll-like receptor 9 (TLR9) is an important component of the innate immune system and have been associated with several autoimmune diseases, such as Systemic Lupus Erythematosus (SLE). The aim of this study was to investigate polymorphisms in TLR9 gene in a Brazilian SLE patients group and their association with clinical manifestation, particularly Jaccoud's arthropathy (JA). We analyzed DNA samples from 204 SLE patients, having a subgroup of them presenting JA (n=24). A control group (n=133) from the same city was also included. TLR9 single nucleotide polymorphisms (SNPs) (−1237 C>T and +2848 G>A) were identified by sequencing analysis. The TLR9 gene genotype frequency was similar both in SLE patients and the control group. In the whole SLE population, an association between the homozygosis of allele C at position −1237 with psychosis and anemia (p < 0.01) was found. Likewise, the homozygosis of allele G at position +2848 was associated with a discoid rash (p < 0.05). There was no association between JA and TLR9 polymorphisms. These data show that TLR9 polymorphisms do not seem to be a predisposing factor for SLE in the Brazilian population, and that SNPs are not associated with JA.


Resumo O receptor Toll-like 9 (TLR9) é um componente importante do sistema imunológico inato e tem sido associado a várias doenças autoimunes, como o Lúpus Eritematoso Sistêmico (LES). O objetivo deste estudo foi investigar polimorfismos no gene TLR9 em um grupo de pacientes brasileiros com LES e sua associação com a manifestação clínica, particularmente a artropatia de Jaccoud (JA). Foram analisadas amostras de DNA de 204 pacientes com LES, e um subgrupo com JA (n=24). Um grupo de controle (n=133) da mesma cidade também foi incluído. Os polimorfismos de nucleotídeos únicos TLR9 (SNPs) (−1237 C>T e +2848 G>A) foram identificados pela análise de sequenciamento. A frequência do genótipo genético TLR9 foi semelhante tanto em pacientes com LES quanto no grupo controle. Em toda a população de LES, foi encontrada associação entre a homozigose do alelo C na posição −1237 com psicose e anemia (p < 0,01). Da mesma forma, a homozigose do alelo G na posição +2848 foi associada a uma erupção cutânea discoide (p < 0,05). Não houve associação entre polimorfismos JA e TLR9. Esses dados mostram que os polimorfismos TLR9 não parecem ser um fator predisponível para o LES na população brasileira, e que os SNPs não estão associados ao JA.


Sujets)
Humains , Récepteur-9 de type Toll-like/génétique , Lupus érythémateux disséminé/génétique , Brésil , Projets pilotes , Prédisposition génétique à une maladie/génétique , Fréquence d'allèle/génétique
16.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 134-141, 2023.
Article Dans Chinois | WPRIM | ID: wpr-979458

Résumé

ObjectiveTo observe the effect of Flemiphilippinin D on collagen-induced arthritis (CIA) in rats and explore its mechanism. MethodForty rats were randomly divided into normal group, CIA group, methotrexate (MTX) group (1.35 mg·kg-1), low-dose Flemiphilippinin D group (1.5 mg·kg-1), and high-dose Flemiphilippinin D group (3.0 mg·kg-1), with eight rats in each group. Except for the normal group, the CIA model was induced by type Ⅱ collagen. Each group was given corresponding liquid medicine or normal saline, once a week in the MTX group, and once a day in the Flemiphilippinin D groups for a total of 28 days. The arthritis score and joint swelling degree of rats were experimentally recorded. Pathological changes in the ankle joint of rats were observed by hematoxylin-eosin (HE) staining. Serum levels of inflammatory cytokines interleukin (IL)-1β, IL-6, IL-8, and tumor necrosis factor (TNF)-α were detected by enzyme-linked immunoabsorbent assay (ELISA), and the mRNA expression of Toll-like receptor 2 (TLR2), myeloid differentiation factor 88 (MyD88), and nuclear transcription factor-κB (NF-κB) p65 were detected by Real-time fluorescence quantitative polymerase chain reaction (Real-time PCR), and the protein expressions of TLR2, MyD88, and NF-κB p65 were detected by Western blot. ResultCompared with the normal group, the ankle joint of the CIA group was significantly swollen, and the clinical score of arthritis and the degree of joint swelling were significantly increased (P<0.01). The ankle joint tissue structure was significantly damaged, and the levels of inflammatory factors IL-1β, IL-6, IL-8, and TNF-α in serum were significantly increased (P<0.01). The mRNA levels and protein levels of TLR2, MyD88, and NF-κB p65 were significantly increased(P<0.01). Compared with the CIA group, arthritis clinical score and joint swelling of rats in each administration group were significantly reduced (P<0.05, P<0.01), and the pathological changes in the ankle joint were significantly improved. The contents of serum IL-1β, IL-6, IL-8, and TNF-α were significantly decreased (P<0.05, P<0.01). The mRNA levels and protein levels of TLR2, MyD88, and NF-κB p65 in the ankle joint were significantly decreased (P<0.05, P<0.01). ConclusionTo a certain extent, Flemiphilippinin D can reduce the expression of inflammatory factors in rheumatoid arthritis rats and play a good therapeutic effect. It works perhaps by inhibiting the activation of the TLR2/MyD88/NF-κB signaling pathway and thus shows an anti-inflammatory effect.

17.
Neuroscience Bulletin ; (6): 911-928, 2023.
Article Dans Anglais | WPRIM | ID: wpr-982435

Résumé

Increased intestinal barrier permeability, leaky gut, has been reported in patients with autism. However, its contribution to the development of autism has not been determined. We selected dextran sulfate sodium (DSS) to disrupt and metformin to repair the intestinal barrier in BTBR T+tf/J autistic mice to test this hypothesis. DSS treatment resulted in a decreased affinity for social proximity; however, autistic behaviors in mice were improved after the administration of metformin. We found an increased affinity for social proximity/social memory and decreased repetitive and anxiety-related behaviors. The concentration of lipopolysaccharides in blood decreased after the administration of metformin. The expression levels of the key molecules in the toll-like receptor 4 (TLR4)-myeloid differentiation factor 88 (MyD88)-nuclear factor kappa B (NF-κB) pathway and their downstream inflammatory cytokines in the cerebral cortex were both repressed. Thus, "leaky gut" could be a trigger for the development of autism via activation of the lipopolysaccharide-mediated TLR4-MyD88-NF-κB pathway.


Sujets)
Souris , Animaux , Facteur de transcription NF-kappa B , Facteur de différenciation myéloïde-88/métabolisme , Lipopolysaccharides/pharmacologie , Récepteur de type Toll-4/métabolisme , Trouble autistique/métabolisme , Transduction du signal/physiologie
18.
Journal of Zhejiang University. Science. B ; (12): 650-662, 2023.
Article Dans Anglais | WPRIM | ID: wpr-982405

Résumé

The syndrome of dampness stagnancy due to spleen deficiency (DSSD) is relatively common globally. Although the pathogenesis of DSSD remains unclear, evidence has suggested that the gut microbiota might play a significant role. Radix Astragali, used as both medicine and food, exerts the effects of tonifying spleen and qi. Astragalus polysaccharide (APS) comprises a macromolecule substance extracted from the dried root of Radix Astragali, which has many pharmacological functions. However, whether APS mitigates the immune disorders underlying the DSSD syndrome via regulating gut microbiota and the relevant mechanism remains unknown. Here, we used DSSD rats induced by high-fat and low-protein (HFLP) diet plus exhaustive swimming, and found that APS of moderate molecular weight increased the body weight gain and immune organ indexes, decreased the levels of interleukin-1β (IL-1β), IL-6, and endotoxin, and suppressed the Toll-like receptor 4/nuclear factor-‍κB (TLR4/NF-‍κB) pathway. Moreover, a total of 27 critical genera were significantly enriched according to the linear discriminant analysis effect size (LEfSe). APS increased the diversity of the gut microbiota and changed its composition, such as reducing the relative abundance of Pseudoflavonifractor and Paraprevotella, and increasing that of Parasutterella, Parabacteroides, Clostridium XIVb, Oscillibacter, Butyricicoccus, and Dorea. APS also elevated the contents of short-chain fatty acids (SCFAs). Furthermore, the correlation analysis indicated that 12 critical bacteria were related to the body weight gain and immune organ indexes. In general, our study demonstrated that APS ameliorated the immune disorders in DSSD rats via modulating their gut microbiota, especially for some bacteria involving immune and inflammatory response and SCFA production, as well as the TLR4/NF-κB pathway. This study provides an insight into the function of APS as a unique potential prebiotic through exerting systemic activities in treating DSSD.


Sujets)
Rats , Animaux , Facteur de transcription NF-kappa B/métabolisme , Rate , Microbiome gastro-intestinal , Récepteur de type Toll-4 , Polyosides/pharmacologie , Astragalus/métabolisme , Maladies du système immunitaire/traitement médicamenteux , Poids
19.
Acta Pharmaceutica Sinica ; (12): 377-385, 2023.
Article Dans Chinois | WPRIM | ID: wpr-965697

Résumé

To investigate the mechanism by which Schisandra Chinensis mediates the phenotypic transformation of microglia via microRNA-124 (miR-124)-based regulation of the Toll-like receptor 4 (TLR4) pathway, a model was established using lipopolysaccharide (LPS) stimulation of BV2 cells. Cells were treated with different doses of Schisandra Chinensis extract (SCE). MiR-124 inhibitors and negative control sequences (NC inhibitor) were transfected into LPS-induced BV2 cells and treated with SCE. The MTT assay was used for cell activity detection; an NO kit was used to measure NO release; ELISA kits were used to measure the levels of interleukin-10 (IL-10) and tumor necrosis factor-α (TNF-α). Microglia markers, including ionized calcium binding adapter molecule-1 (IBA-1) and arginase-1 (Arg-1), and the nuclear translocation of nuclear factor-kappa B (NF-κB) were evaluated by immunofluorescent staining. NF-κB p65, IBA-1, Arg-1, TLR4, myeloid differentiation primary factor 88 (MyD88), inhibitor of nuclear factor-kappa B kinases-α (IKK-α), IL-10, TNF-α were detected by immunoblot. SCE at concentrations ranging from 31.25 to 250 μg·mL-1 had no significant effect on cell activity. SCE treatment significantly inhibited NO release induced by LPS (P < 0.001, P < 0.01), increased the level of IL-10 (P < 0.05), and decreased the level of TNF-α (P < 0.001). In addition, SCE significantly reduced the expression of TNF-α, IBA-1, TLR4, and MyD88 (P < 0.01, P < 0.001) and elevated the expression of IL-10, Arg-1, NF-κB P65 and IKK-α (P < 0.001, P < 0.01, P < 0.05). SCE treatment could also promote the expression of miR-124 (P < 0.01). However, transfection with the miR-124 inhibitor increased TNF-α (P < 0.001), decreased the level of IL-10 (P < 0.05), increased the mRNA level and the protein expression of TNF-α and IBA-1 (P < 0.05, P < 0.01, P < 0.001), and decreased the mRNA level and protein expression of IL-10 and Arg-1 (P < 0.001, P < 0.01). In addition, the inhibition of TLR4 and MyD88 was attenuated. In conclusion, SCE appears to inhibit the activation of TLR4 signaling pathway by upregulating miR-124 so as to inhibit microglia M1 polarization and promote microglia M2 polarization.

20.
Journal of Public Health and Preventive Medicine ; (6): 122-126, 2023.
Article Dans Chinois | WPRIM | ID: wpr-965198

Résumé

Objective To explore the association of Toll-like receptor 7, CTLA-4 gene polymorphisms and severe asthma. Methods From February 2018 to March 2020, 175 asthma patients admitted to the respiratory department of our hospital were selected as the research subjects (109 cases of mild disease and 66 cases of severe disease), and 248 cases of healthy people who were included in the outpatient physical examination of our hospital during the same period were selected as the normal control group. Toll-like receptor 7 and CTLA-4 gene polymorphisms in the above groups were determined, and the relationship between Toll-like receptor 7 and CTLA-4 polymorphisms and severe asthma was evaluated by calculating the odds ratio (OR) and 95% confidence interval(CI). The relationship between the genotypes of Toll-like receptor 7 and CTLA-4 polymorphisms and severe asthma were evaluated by logistic regression analysis. Results The proportion of TLR7 rs3853839 CC genotype, CTLA-4 rs231725 AA genotype, TLR7 rs3853839 C allele frequency and CTLA-4 rs231725 A allele frequency in severe asthma group and mild asthma group were higher than those in normal control group(P<0.05). The proportion of TLR7 rs3853839 CC genotype, the proportion of CTLA-4 rs231725 AA genotype, the frequency of TLR7 rs3853839 C allele, and the frequency of CTLA-4 rs231725 A allele in the severe asthma group were higher than those in the mild asthma group(P<0.05). TLR7 rs3853839 CC genotype (OR=10.32, 95%CI=5.59-23.89), CTLA-4 rs231725 AA genotype (OR=13.21, 95%CI=3.58-20.25), TLR7 rs3853839 C allele frequency (OR=11.32, 95% CI=4.25-21.14) and CTLA-4 rs231725 A allele frequency (OR=13.24, 95% CI=6.59-20.21) could increase the susceptibility to severe asthma(P<0.05). TLR7 rs3853839CC genotype, TLR7 rs3853839C allele frequency, CTLA-4 rs231725AA genotype and CTLA-4 rs231725A allele frequency were risk factors for severe asthma(P<0.05). Conclusion TLR7 rs3853839 CC genotype, TLR7 rs3853839 C allele frequency, CTLA-4 rs231725 AA genotype and CTLA-4 rs231725 A allele frequency are associated with the occurrence of severe asthma.

SÉLECTION CITATIONS
Détails de la recherche