Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 5 de 5
Filtre
1.
China Journal of Chinese Materia Medica ; (24): 1518-1525, 2023.
Article Dans Chinois | WPRIM | ID: wpr-970623

Résumé

Since Curcumae Radix decoction pieces have multiple sources, it is difficult to distinguish depending on traditional cha-racters, and the mixed use of multi-source Curcumae Radix will affect its clinical efficacy. Heracles Neo ultra-fast gas phase electronic nose was used in this study to quickly identify and analyze the odor components of 40 batches of Curcumae Radix samples from Sichuan, Zhejiang, and Guangxi. Based on the odor fingerprints established for Curcumae Radix decoction pieces of multiple sources, the odor components was identified and analyzed, and the chromatographic peaks were processed and analyzed to establish a rapid identification method. Principal component analysis(PCA), discriminant factor analysis(DFA), and soft independent modeling cluster analysis(SIMCA) were constructed for verification. At the same time, one-way analysis of variance(ANOVA) combined with variable importance in projection(VIP) was employed to screen out the odor components with P<0.05 and VIP>1, and 13 odor components such as β-caryophyllene and limonene were hypothesized as the odor differential markers of Curcumae Radix decoction pieces of diffe-rent sources. The results showed that Heracles Neo ultra-fast gas phase electronic nose can well analyze the odor characteristics and rapidly and accurately discriminate Curcumae Radix decoction pieces of different sources. It can be applied to the quality control(e.g., online detection) in the production of Curcumae Radix decoction pieces. This study provides a new method and idea for the rapid identification and quality control of Curcumae Radix decoction pieces.


Sujets)
Médicaments issus de plantes chinoises/analyse , Nez électronique , Chine , Racines de plante/composition chimique , Limonène/analyse , Chromatographie en phase liquide à haute performance
2.
China Pharmacy ; (12): 2182-2186, 2022.
Article Dans Chinois | WPRIM | ID: wpr-943054

Résumé

OBJECTIVE To establish the method for monitoring the dynamic changes of odor components in Cornus officinalis during processing . METHODS The decoction pieces of C. officinalis with different processing time were prepared by the wine steaming method . The dynamic changes of odor components were obtained by using ultra -fast gas electronic nose ;odor components were identified by comparing with AroChemBase database ;the dynamic changes of odor compounds were analyzed in combination with peak area ,and the chemical pattern recognition analysis were carried out . RESULTS A total of 12 common peaks of odor components were identified in the fingerprints of raw C. officinalis,and 21 in the fingerprints of decoction pieces of C. officinalis. Eight odor components with the high proportion of peak area during processing were ethanol , isopropyl alcohol , 2- methylpropylaldehyde,ethyl acetate ,2-methylbutanal,isoamyl alcohol ,2-hexanol and furfural ,among which ,the peak areas of ethanol,isoamyl alcohol and 2-hexanol showed a trend of first increasing and then decreasing ;at 24 h of processing ,their peak areas were still higher than those of raw products . The peak areas of ethyl acetate ,2-methylbutanal and furfural nearly increased with the increase of processing time . Variable importance in projection of above eight odor components were all greater than 1. CONCLUSIONS The method is established for monitoring the dynamic changes of odor components of C. officinalis during processing. Eight odor components such as ethanol can be used as monitoring indicators of C. officinalis dring processing .

3.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 167-172, 2022.
Article Dans Chinois | WPRIM | ID: wpr-940673

Résumé

ObjectiveIn order to find a fast odor-based method for the identification of sulfur fumigated Gastrodiae Rhizoma, an ultra-fast gas phase electronic nose technology was used to identify the odors of different degrees of sulfur fumigated Gastrodiae Rhizoma decoction pieces. MethodHeracles NEO ultra-fast gas phase electronic nose was employed to collect gas chromatograms of unsulfured and sulfured with different degrees of Gastrodiae Rhizoma decoction pieces, gas chromatograms were performed under programmed temperature (initial temperature of 40 ℃, 0.2 ℃·s-1 to 60 ℃, and then 4 ℃·s-1 to 250 ℃), the sample volume was 5 mL, the incubation temperature was 65 ℃ and incubation time was 35 min. Kovats retention index and the AroChemBase database were used for qualitative analysis, and stoichiometric analysis was performed on this basis. Principal component analysis (PCA), discriminant factor analysis (DFA) and partial least squares-discriminant analysis (PLS-DA) models were established to identify the Gastrodiae Rhizoma decoction pieces with different degrees of sulfur fumigation. ResultAccording to the comparative analysis of AroChemBase database, there were significant differences in the odor characteristics of sulfur fumigated and non-sulfur fumigated Gastrodiae Rhizoma, cyclopentane, acetone and heptane might be the odor components to distinguish the degree of sulfur fumigation in Gastrodiae Rhizoma decoction pieces. The identification index of PCA model was 81, the accumulative discriminant index of the discriminating factors was 92.09% in DFA model, the supervisory model interpretation rate of PLS-DA model was 0.963 and the predictive ability parameter was 0.956, indicating that PCA, DFA and PLS-DA models could well distinguish Gastrodiae Rhizoma decoction pieces with different sulfur fumigation degrees. ConclusionHeracles NEO ultra-fast gas phase electronic nose can be used as a rapid method to identify and distinguish Gastrodiae Rhizoma decoction pieces with different levels of sulfur fumigation. Meanwhile, it can provide a rapid, simple and green method and technology for identification of traditional Chinese medicine decoction pieces by sulfur fumigation.

4.
China Pharmacy ; (12): 2203-2209, 2021.
Article Dans Chinois | WPRIM | ID: wpr-886800

Résumé

OBJECTIVE:To esta blish the m ethod for identifying Schizonepeta tenusfolia from different habitats based on odor information. METHODS :The odor of S. tenusfolia from different habitats were identified by Heracles Ⅱ ultra-fast gas phase electronic nose. Qualitative analysis was conducted according to obtained chromatographic information combined with AroChemBase database and Kovats retention index qualitative database. Principle component analysis (PCA)and discriminant factor analysis (DFA)were conducted by using Alpha Soft V 14.2 software,and cluster analysis (CA)was performed with SPSS 22.2 software. RESULTS :There were 16 common peaks in 15 batches of S. tenusfolia from different habitats. After comparison with AroChemBase database and Kovates retention index qualitative database ,a total of 13 possible components were obtained. The possible components and sensory description information of S. tenusfolia from different habitats were basically the same ,but only the content was different. The chromatographic peak intensities of common peak No. 2 were in descending order as Anhui > Gansu>Henan>Hebei>Jiangsu,the chromatographic peak intensities of common peak No. 6 were in descending order as Anhui > Hebei>Gansu≈Henan>Jiangsu,the chromatographic peak intensities of common peak No. 9 were in descending order as Anhui > Gansu>Henan>Jiangsu>Hebei,the chromatographic peak intensity of common peak No. 13 were in descending order as Anhui ≈ Gansu>Hebei>Jiangsu>Henan,which represented the chromatographic peak intensity of methyl formate (peak No. 2),α-pinene (peak No. 6),3-nonone(peak No. 9)and α-terpineol(peak No. 13)were significantly different due to the change of habitats. PCA results showed that the cumulative contribution rate of the first two principal components was 96.807%. Results of DFA showed that contribution rates of discriminant factor 1 and discriminant factor 2 were 92.089% and 3.982%. CA results showed that when the distance was 10,15 batches of samples could be clustered into 3 categories,B1-B5 and J 1-J3 into one category ,A1-A3 into one category ,G1,G2,N1 and N 2 into one category. The results were basically consistent with those of PCA and DFA. CONCLUSIONS:Ultra-fast gas phase electronic nose technology can be used to identify S. tenusfolia from different habitats rapidly. Methyl formate ,α-pinene,3-nonone and α-terpineol may be the key factors to distinguish S. tenusfolia from different habitats.

5.
China Journal of Chinese Materia Medica ; (24): 5129-5133, 2019.
Article Dans Chinois | WPRIM | ID: wpr-1008375

Résumé

The quality of honeysuckle has always been an important factor in industrial development. Flowering is one of the elements for the variation of the effective components in honeysuckle. We can conveniently recognize whether the commodity is mixed with blossomed honeysuckle in the form of medicinal material. However,it is hard to identify whether the products are mixed with blossomed honeysuckle in the form of powdersince visual identification traits are missing. Therefore,this study aims to seek an effective method of odor-based distinguish for identifying the quality of honeysuckle powder in different ratios by using Heracles Ⅱ ultra-fast gas phase electronic nose.The powdered samples were prepared with flower buds and fully blooming flowers in different proportion. Gas chromatograms of the powder were obtained by HeraclesⅡ ultra-fast gas phase electronic nose. Through analyzing the data of chromatograms,we have concluded that the qualitative results of the prepared powder were almost the same,and there existed differences in the components content. Meanwhile,the hexanal odor appeared to be the critical factor in identifying honeysuckle powder quality among the flavor of all possible compounds. Also,we have applied PCA,DFA and CQ to identify and classify the variety of the powder based on the chromatogram data. Finally,it is realized that the powder was rapidly identified and classified into three grades based on the proportion of flowering honeysuckle. The predicted concentration value for the first class is less than 3,the value of is not less than 3 and less than 5 for the second class,and more than 5 for the third class. In summary,the results obtained by the study suggest that Heracles Ⅱ ultra-fast gas phase electronic nose analysis can be used as a rapid identification method for the quality of honeysuckle powder. At the same time,it can provide a reference for the quality classification of honeysuckle based on flowering degrees.


Sujets)
Nez électronique , Fleurs/composition chimique , Lonicera/composition chimique , Odorisants/analyse , Préparations à base de plantes/analyse , Poudres/analyse , Contrôle de qualité
SÉLECTION CITATIONS
Détails de la recherche