Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 1 de 1
Filtre
Ajouter des filtres








Gamme d'année
1.
Journal of Biomedical Engineering ; (6): 217-227, 2022.
Article Dans Chinois | WPRIM | ID: wpr-928217

Résumé

Physiological studies reveal that rats rely on multiple spatial cells for spatial navigation and memory. In this paper, we investigated the firing mechanism of spatial cells within the entorhinal-hippocampal structure of the rat brain and proposed a spatial localization model for mobile robot. Its characteristics were as follows: on the basis of the information transmission model from grid cells to place cells, the neural network model of place cells interaction was introduced to obtain the place cell plate with a single-peaked excitatory activity package. Then the solution to the robot's position was achieved by establishing a transformation relationship between the position of the excitatory activity package on the place cell plate and the robot's position in the physical environment. In this paper, simulation experiments and physical experiments were designed to verify the model. The experimental results showed that compared with RatSLAM and the model of grid cells to place cells, the positioning performance of the model in this paper was more accurate, and the cumulative error in the long-time path integration process of the robot was also smaller. The research results of this paper lay a foundation for the robot navigation method that mimics the cognitive mechanism of rat brain.


Sujets)
Animaux , Rats , Cognition , Hippocampe , Modèles neurologiques , Cellules de lieu , Robotique
SÉLECTION CITATIONS
Détails de la recherche