Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 1 de 1
Filtre
Ajouter des filtres








Gamme d'année
1.
Neuroscience Bulletin ; (6): 519-532, 2022.
Article Dans Anglais | WPRIM | ID: wpr-929106

Résumé

Functional hubs with disproportionately extensive connectivities play a crucial role in global information integration in human brain networks. However, most resting-state functional magnetic resonance imaging (R-fMRI) studies have identified functional hubs by examining spontaneous fluctuations of the blood oxygen level-dependent signal within a typical low-frequency band (e.g., 0.01-0.08 Hz or 0.01-0.1 Hz). Little is known about how the spatial distributions of functional hubs depend on frequency bands of interest. Here, we used repeatedly measured R-fMRI data from 53 healthy young adults and a degree centrality analysis to identify voxelwise frequency-resolved functional hubs and further examined their test-retest reliability across two sessions. We showed that a wide-range frequency band (0.01-0.24 Hz) accessible with a typical sampling rate (fsample = 0.5 Hz) could be classified into three frequency bands with distinct patterns, namely, low-frequency (LF, 0.01-0.06 Hz), middle-frequency (MF, 0.06-0.16 Hz), and high-frequency (HF, 0.16-0.24 Hz) bands. The functional hubs were mainly located in the medial and lateral frontal and parietal cortices in the LF band, and in the medial prefrontal cortex, superior temporal gyrus, parahippocampal gyrus, amygdala, and several cerebellar regions in the MF and HF bands. These hub regions exhibited fair to good test-retest reliability, regardless of the frequency band. The presence of the three frequency bands was well replicated using an independent R-fMRI dataset from 45 healthy young adults. Our findings demonstrate reliable frequency-resolved functional connectivity hubs in three categories, thus providing insights into the frequency-specific connectome organization in healthy and disordered brains.


Sujets)
Humains , Jeune adulte , Encéphale/imagerie diagnostique , Connectome/méthodes , Imagerie par résonance magnétique/méthodes , Reproductibilité des résultats , Repos
SÉLECTION CITATIONS
Détails de la recherche