Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 8 de 8
Filtre
1.
China Journal of Chinese Materia Medica ; (24): 3913-3921, 2023.
Article Dans Chinois | WPRIM | ID: wpr-981524

Résumé

The present study aimed to investigate the inhibitory effect and mechanism of Isodon terricolous-medicated serum on lipopolysaccharide(LPS)-induced hepatic stellate cell(HSC) activation. LPS-induced HSCs were divided into a blank control group, an LPS model group, a colchicine-medicated serum group, an LPS + blank serum group, an I. terricolous-medicated serum group, a Toll-like receptor 4(TLR4) blocker group, and a TLR4 blocker + I. terricolous-medicated serum group. HSC proliferation was detected by methyl thiazolyl tetrazolium(MTT) assay. Enzyme-linked immunosorbent assay(ELISA) was used to measure type Ⅰ collagen(COL Ⅰ), COL Ⅲ, transforming growth factor-β1(TGF-β1), intercellular adhesion molecule-1(ICAM-1), α-smooth muscle actin(α-SMA), vascular cell adhesion molecule-1(VCAM-1), cysteinyl aspartate-specific proteinase-1(caspase-1), and monocyte chemotactic protein-1(MCP-1). Real-time PCR(RT-PCR) was used to detect mRNA expression of TLR4, IκBα, and NOD-like receptor thermal protein domain associated protein 3(NLRP3), nuclear factor-κB(NF-κB) p65, gasdermin D(GSDMD), and apoptosis-associated speck-like protein containing a CARD(ASC) in HSCs. Western blot(WB) was used to detect the protein levels of TLR4, p-IκBα, NF-κB p65, NLRP3, ASC, and GSDMD in HSCs. The results showed that I. terricolous-medicated serum could inhibit the proliferation activity of HSCs and inhibit the secretion of COL Ⅰ, COL Ⅲ, α-SMA, TGF-β1, caspase-1, MCP-1, VCAM-1, and ICAM-1 in HSCs. Compared with the LPS model group, the I. terricolous-medicated serum group, the colchicine-medicated serum group, and the TLR4 blocker group showed down-regulated expression of p-IκBα, NLRP3, NF-κB p65, GSDMD, and ASC, and up-regulated expression of IκBα. Compared with the TLR4 blocker group, the TLR4 blocker + I. terricolous-medicated serum group showed decreased expression of TLR4, p-IκBα, NLRP3, NF-κB p65, GSDMD, and ASC, and increased expression of IκBα. In conclusion, I. terricolous-medicated serum down-regulates HSC activation by inhibiting the TLR4/NF-κB/NLRP3 signaling pathway.


Sujets)
Facteur de transcription NF-kappa B/métabolisme , Cellules étoilées du foie , Facteur de croissance transformant bêta-1/métabolisme , Inhibiteur alpha de NF-KappaB/métabolisme , Molécule-1 d'adhérence intercellulaire/métabolisme , Isodon , Protéine-3 de la famille des NLR contenant un domaine pyrine/métabolisme , Récepteur de type Toll-4/métabolisme , Molécule-1 d'adhérence des cellules vasculaires/métabolisme , Lipopolysaccharides/pharmacologie , Transduction du signal , Colchicine/pharmacologie , Caspases
2.
Chinese journal of integrative medicine ; (12): 1111-1120, 2023.
Article Dans Anglais | WPRIM | ID: wpr-1010315

Résumé

OBJECTIVE@#To explore the anti-inflammatory effects of ethyl lithospermate in lipopolysaccharide (LPS)-stimulated RAW 264.7 murine-derived macrophages and zebrafish, and its underlying mechanisms.@*METHODS@#3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazoliumbromide (MTT) assays were performed to investigate the toxicity of ethyl lithospermate at different concentrations (12.5-100 µ mol/L) in RAW 264.7 cells. The cells were stimulated with LPS (100 ng/mL) for 12 h to establish an inflammation model in vitro, the production of pro-inflammatory cytokines interleukin (IL)-6 and tumor necrosis factor α (TNF-α) were assessed by enzyme linked immunosorbent assay (ELISA). Western blot was used to ascertain the protein expressions of signal transducer and activator of transcription 3 (STAT3), nuclear factor kappa B (NF-κB) p65, phospho-STAT3 (p-STAT3, Tyr705), inhibitor of NF-κB (IκB) α, and phospho-I κB α (p-IκB α, Ser32), and confocal imaging was used to identify the nuclear translocation of NF-κB p65 and p-STAT3 (Tyr705). Additionally, the yolk sacs of zebrafish (3 days post fertilization) were injected with 2 nL LPS (0.5 mg/mL) to induce an inflammation model in vivo. Survival analysis, hematoxylin-eosin (HE) staining, observation of neutrophil migration, and quantitative real-time polymerase chain reaction (qRT-PCR) were used to further study the anti-inflammatory effects of ethyl lithospermate and its probable mechanisms in vivo.@*RESULTS@#The non-toxic concentrations of ethyl lithospermate have been found to range from 12.5 to 100 µ mol/L. Ethyl lithospermate inhibited the release of IL-6 and TNF-α(P<0.05 or P<0.01), decreased IκBα degradation and phosphorylation (P<0.05) as well as the nuclear translocation of NF-κB p65 and p-STAT3 (Tyr705) in LPS-induced RAW 264.7 cells (P<0.01). Ethyl lithospermate also decreased inflammatory cells infiltration and neutrophil migration while increasing the survival rate of LPS-stimulated zebrafish (P<0.05 or P<0.01). In addition, ethyl lithospermate also inhibited the mRNA expression levels of of IL-6, TNF-α, IκBα, STAT3, and NF-κB in LPS-stimulated zebrafish (P<0.01).@*CONCLUSION@#Ethyl lithospermate exerts anti-Inflammatory effected by inhibiting the NF-κB and STAT3 signal pathways in RAW 264.7 macrophages and zebrafish.


Sujets)
Animaux , Souris , Facteur de transcription NF-kappa B/métabolisme , Lipopolysaccharides , Danio zébré , Inhibiteur alpha de NF-KappaB/métabolisme , Interleukine-6/métabolisme , Facteur de nécrose tumorale alpha/métabolisme , Facteur de transcription STAT-3/métabolisme , Inflammation/métabolisme , Anti-inflammatoires/usage thérapeutique
3.
China Journal of Chinese Materia Medica ; (24): 202-210, 2023.
Article Dans Chinois | WPRIM | ID: wpr-970515

Résumé

This study aims to explore the effect of Buyang Huanwu Decoction glycosides on the inflammatory response of apolipoprotein E~(-/-)(ApoE~(-/-)) mice and RAW264.7 cells through nuclear factor kappa-B(NF-κB) signaling pathway. In the in vivo experiment, ApoE~(-/-) mice were fed with high-fat diets for 12 weeks to induce the animal model of atherosclerosis, and 75 μg·mL~(-1) oxidized low-density lipoprotein(Ox-LDL) incubated RAW264.7 cells for 24 h to establish the atherosclerosis cell model. Automatic biochemical analyzer, hematoxylin-eosin(HE) staining, enzyme-linked immunosorbent assay(ELISA), Western blot, and droplet digital polymerase chain reaction(PCR) were used to determine the blood lipid levels, aortic intimal thickness, inflammatory factor content, NF-κB pathway-related proteins, and mRNA expression levels, and evaluate arterial atherosclerotic lesions and anti-atherosclerotic mechanisms of the drug. The model of atherosclerosis was successfully established in ApoE~(-/-) mice after 12 weeks of feeding with high-fat diets. In the model group, the plasma levels of total cholesterol(TC), triglyceride(TG), and low-density lipoprotein cholesterol(LDL-C) were increased(P<0.01), the intima of the blood vessels was thickened, the levels of inflammatory factors tumor necrosis factor-α(TNF-α) and interleukin-6(IL-6) were increased, and the protein and mRNA expressions of NF-κB and inhibitor of NF-κB(IκBα) were significantly increased as compared with the control group. Compared with the model group, the high-dose Buyang Huanwu Decoction glycoside group decreased the plasma levels of TC, TG, and LDL-C, reduced the plaque area and thickness and the content of inflammatory factor TNF-α, and inhibited the protein and mRNA expressions of NF-κB and IκBα, with the effect same as Buyang Huanwu Decoction. In the in vivo experiment, 75 μg·mL~(-1) Ox-LDL stimulated RAW264.7 cells for 24 h to successfully establish a foam cell model. As compared with the control group, the nuclear amount of NF-κB and the protein and mRNA expressions of IκBα in the model group increased. Compared with the model group, the middle-dose and high-dose Buyang Huanwu Decoction glycoside groups decreased the nuclear amount of NF-κB and the protein and mRNA expressions of IκBα. The above results show that the glycosides are the main effective substances of Buyang Huanwu Decoction against atherosclerosis, which inhibit the NF-κB pathway and reduce the inflammatory response, thus playing the role against atherosclerotic inflammation same as Buyang Huanwu Decoction.


Sujets)
Souris , Animaux , Facteur de transcription NF-kappa B/métabolisme , Inhibiteur alpha de NF-KappaB/métabolisme , Facteur de nécrose tumorale alpha/métabolisme , Hétérosides/pharmacologie , Cholestérol LDL , Athérosclérose/génétique , Transduction du signal , Inflammation/traitement médicamenteux , Interleukine-6 , Apolipoprotéines E/pharmacologie , ARN messager/métabolisme
4.
Journal of Zhejiang University. Medical sciences ; (6): 627-635, 2023.
Article Dans Anglais | WPRIM | ID: wpr-1009923

Résumé

OBJECTIVES@#To explore the mechanism of Chinese medicine Jiangzhuo mixture regulating glucose and lipid metabolism in obese rats.@*METHODS@#Thirty healthy male SD rats were randomly divided into normal control group, model control group, and Jiangzhuo mixture treatment group, with 10 rats in each group. The rats in the normal control group were fed with normal diet, the obesity model was induced by feeding high-fat diet in the model control group and the Jiangzhuo mixture treatment group, the rats in the treatment group were given with Jiangzhuo mixture 50 g/kg by gavage. After 8 weeks of intervention, the blood glucose (GLU), total cholesterol (TC), triglyceride (TG), low-density lipoprotein cholesterol (LDL-C) and high-density lipoprotein cholesterol (HDL-C) levels were measured in the three groups. Quantitative reverse transcription PCR were used to detect the expression levels of PR domain containing 16 (PRDM16) and uncoupling protein 1 (UCP1) in white and brown adipose tissues of the rats in each group; Western blotting was used to detect the expression of PRDM16 in the white and brown adipose tissue of rats, and Toll-like receptor 4 (TLR4), nuclear factor-κB (NF-κB) and inhibitor of NF-κB alpha (IκBα) in the white adipose tissue; immunohistochemistry was used to detect the expression of UCP1 protein in white and brown adipose tissues.@*RESULTS@#Compared with the normal control group, the white fat weight (P<0.01), white fat coefficient (P<0.05) and Lee's coefficient (P<0.01) were significantly increased in the model control group; the contents of GLU, TC, TG and LDL-C were all increased, and the content of TG was significantly increased (P<0.05) in the model control group. The mRNA and protein expression levels of PRDM16 and UCP1 in white fat and brown fat were significantly decreased (P<0.05) in the model control group. Compared with the model control group, the white fat weight and white fat coefficient and Lee's coefficient were significantly reduced in the Jiangzhuo mixture treatment group (all P<0.01), the levels of GLU, TC, TG, and LDL-C in the the treatment group were all reduced, and the content of TG was reduced more obviously (P<0.01); expression levels of PRDM16 and UCP1 mRNA and protein were increased in brown and white adipose tissue. Compared with the normal control group, the expression levels of TLR4, phospho-IκBα and NF-κB-p65 proteins in white adipose tissue of the model control group were significantly increased (all P<0.01), while the expression levels of these proteins in the treatment group were significantly lower than those in the model control group (all P<0.05).@*CONCLUSIONS@#Jiangzhuo mixture can alleviate high-fat diet-induced increase in body fat, abnormal expression of biochemical indexes and promote the expression of key proteins including UCP1 and PRDM16 in white and brown adipose tissues by regulating TLR4/IκBα/NF-κB signaling pathway.


Sujets)
Rats , Mâle , Animaux , Facteur de transcription NF-kappa B/métabolisme , Rat Sprague-Dawley , Glucose , Métabolisme lipidique , Récepteur de type Toll-4 , Cholestérol LDL/métabolisme , Inhibiteur alpha de NF-KappaB/métabolisme , Médecine traditionnelle chinoise , Transduction du signal , Triglycéride , Facteurs de transcription/métabolisme , Obésité , ARN messager
5.
Chinese Journal of Cellular and Molecular Immunology ; (12): 693-700, 2023.
Article Dans Chinois | WPRIM | ID: wpr-1009419

Résumé

Objective To investigate the effects and mechanism of Interleukin-33 (IL-33) mediated proliferation and differentiation of pulmonary myofibroblasts (MFbs) in pulmonary fibrosis (PF). Methods C57BL/6 mice were randomly divided into four groups: a control group, a bleomycin (BLM) group, a BLM combined with IL-33 group and a BLM combined with anti-IL-33 antibody group, 12 mice in each group. The PF model was induced by intratracheal injection of BLM (5000 U/kg). The degrees of fibrosis were examined using HE and Masson staining. ELISA was used to measure the plasma levels of IL-33. Immunohistochemical staining was used to measure the expression of alpha smooth muscle actin (α-SMA) in lung tissue. Primary pulmonary fibroblasts were isolated and cultured from lung tissues of mice. The cells were divided into four groups: a control group, an IL-33 group, an IL-33 combined with dimethyl sulfoxide (DMSO) group and an IL-33 combined with pyrrolidine dithiocarbamate (PDTC) group. The cells were treated with DMSO or PDTC for 1 hour and then with IL-33 for 48 hours. Cell proliferation was measured by 5-ethynyl-2'-deoxyuridine (EdU) assay and cell cycle was measured by flow cytometry. TranswellTM assay was used to analyze cell migration. Real-time quantitative PCR was used to measure the expression of collagen type I (Col1), Col3 and α-SMA mRNA. The protein levels of IL-33, Col1, Col3, α-SMA, eukaryotic initiation factor 3a (eIF3a), phosphorylated IκBα (p-IκBα) (total lysate), p-NF-κB p65(total lysate) and NF-κB p65 (nucleus) were measured by Western blot analysis. Results In vivo, compared with the control group, the expressions of IL-33, p-IκBα (total lysate), p-NF-κB p65 (total lysate), NF-κB p65(nucleus), eIF3a, α-SMA, Col1 and Col3 in the BLM group significantly increased. Compared with the BLM group, the expressions of p-IκBα (total lysate), p-NF-κB p65 (total lysate), NF-κB p65 (nucleus), eIF3a, α-SMA, Col1 and Col3 in the IL-33 group increased further and the PF was further aggravated. But the effect of anti-IL-33 antibody was just opposite to that of IL-33. In vitro, IL-33 markedly induced the proliferation and migration of pulmonary fibroblasts, and significantly up-regulated the expression of p-IκBα (total lysate), p-NF-κB p65(total lysate), NF-κB p65 (nucleus), eIF3a, α-SMA, Col1 and Col3. But all these effects of IL-33 were reversed by pyrrolidine dithiocarbamate. Conclusion The results suggest that IL-33 may promote the expression of eIF3a by activating NF-κB signaling pathway, thus inducing the proliferation and differentiation of MFbs and promoting the occurrence and development of PF.


Sujets)
Animaux , Souris , Bléomycine/métabolisme , Différenciation cellulaire , Prolifération cellulaire , Diméthylsulfoxyde/pharmacologie , Fibroblastes , Interleukine-33/pharmacologie , Souris de lignée C57BL , Myofibroblastes/métabolisme , Facteur de transcription NF-kappa B/métabolisme , Inhibiteur alpha de NF-KappaB/métabolisme , Fibrose pulmonaire , Transduction du signal
6.
China Journal of Chinese Materia Medica ; (24): 5871-5880, 2023.
Article Dans Chinois | WPRIM | ID: wpr-1008785

Résumé

This study investigated the neuroprotective effects and underlying mechanism of Liujing Toutong Tablets(LJTT) on a rat model of permanent middle cerebral artery occlusion(pMCAO). The pMCAO model was established using the suture method. Eighty-four male SPF-grade SD rats were randomly divided into a sham operation group, a model group, a nimodipine group(0.020 g·kg~(-1)), and high-, medium-, and low-dose LJTT groups(2.8, 1.4, and 0.7 g·kg~(-1)). The Longa score, adhesive removal test and laser speckle contrast imaging technique were used to evaluate the degree of neurological functional impairment and changes in local cerebral blood flow. The survival and mortality of rats in each group were recorded daily. After seven days of continuous administration following the model induction, the rats in each group were euthanized, and brain tissue and blood samples were collected for corresponding parameter measurements. Nissl staining was used to examine pathological changes in brain tissue neurons. The levels of tumor necrosis factor-alpha(TNF-α), interleukin-6(IL-6), IL-1β, vascular endothelial growth factor(VEGF), calcitonin gene-related peptide(CGRP), beta-endorphin(β-EP), and endogenous nitric oxide(NO) in rat serum were measured using specific assay kits. The entropy weight method was used to analyze the weights of various indicators. The protein expression levels of nuclear factor kappa-B(NF-κB), inhibitor kappaB alpha(IκBα), phosphorylated IκBα(p-IκBα), and phosphorylated inhibitor of NF-κB kinase alpha(p-IKKα) in brain tissue were determined using Western blot. Immunohistochemistry was used to detect the protein expression of chemokine-like factor 1(CKLF1) and C-C chemokine receptor 5(CCR5) in rat brain tissue. Compared with the sham operation group, the model group showed significantly higher neurological functional impairment scores, prolonged adhesive removal time, decreased cerebral blood flow, increased neuronal damage, reduced survival rate, significantly increased levels of TNF-α, IL-1β, IL-6, CGRP, and NO in serum, significantly decreased levels of VEGF and β-EP, significantly increased expression levels of NF-κB p65, p-IκBα/IκBα, and p-IKKα in rat brain tissue, and significantly upregulated protein expression of CKLF1 and CCR5. Compared with the model group, the high-dose LJTT group significantly improved the neurological functional score of pMCAO rats after oral administration for 7 days. LJTT at all doses significantly reduced adhesive removal time and restored cerebral blood flow. The high-and medium-dose LJTT groups significantly improved neuronal damage. The LJTT groups at all doses showed reduced levels of TNF-α, IL-1β, IL-6, CGRP, and NO in rat serum, increased VEGF and β-EP levels, and significantly decreased expression levels of NF-κB p65, p-IκBα/IκBα, p-IKKα, and CCR5 protein in rat brain tissue. The entropy weight analysis revealed that CGRP and β-EP were significantly affected during the model induction, and LJTT exhibited a strong effect in reducing the release of inflammatory factors such as TNF-α and IL-1β. LJTT may exert a neuroprotective effect on rats with permanent cerebral ischemia by reducing neuroinflammatory damage, and its mechanism may be related to the inhibition of the NF-κB signaling pathway and the regulation of the CKLF1/CCR5 axis. Additionally, LJTT may exert certain analgesic effects by reducing CGRP and NO levels and increasing β-EP levels.


Sujets)
Rats , Mâle , Animaux , Facteur de transcription NF-kappa B/métabolisme , Inhibiteur alpha de NF-KappaB/métabolisme , Facteur de croissance endothéliale vasculaire de type A/génétique , I-kappa B Kinase/pharmacologie , Facteur de nécrose tumorale alpha/pharmacologie , Interleukine-6/génétique , Peptide relié au gène de la calcitonine/pharmacologie , Rat Sprague-Dawley , Transduction du signal , Encéphalopathie ischémique/traitement médicamenteux , Comprimés
7.
China Journal of Chinese Materia Medica ; (24): 4164-4172, 2023.
Article Dans Chinois | WPRIM | ID: wpr-1008613

Résumé

The study aims to observe the effects and explore the mechanisms of Buyang Huanwu Decoction and Astragali Radix-Angelicae Sinensis Radix combination in the treatment of the inflammatory response of mice with atherosclerosis(AS) via the Toll-like receptor 4(TLR4)/myeloid differentiation primary response protein 88(MyD88)/nuclear factor-κB(NF-κB) signaling pathway. Male ApoE~(-/-) mice were randomly assigned into a model group, a Buyang Huanwu Decoction group, an Astragali Radix-Angelicae Sinensis Radix combination group, and an atorvastatin group, and male C57BL/6J mice of the same weeks old were used as the control group. Other groups except the control group were given high-fat diets for 12 weeks to establish the AS model, and drugs were administrated by gavage. Aortic intimal hyperplasia thickness, blood lipid level, plasma inflammatory cytokine levels, M1/M2 macrophage markers, and expression levels of proteins in TLR4/MyD88/NF-κB pathway in the vessel wall were measured to evaluate the effects of drugs on AS lesions and inflammatory responses. The results showed that the AS model was successfully established with the ApoE~(-/-) mice fed with high-fat diets. Compared with the control group, the model group showed elevated plasma total cholesterol(TC), triglyceride(TG), and low-density lipoprotein cholesterol(LDL-c) levels(P<0.05), thickened intima(P<0.01), and increased plasma tumor necrosis factor-α(TNF-α) and interleukin-6(IL-6) levels(P<0.01). Moreover, the model group showed increased expression of vascular cell adhesion molecule-1(VCAM-1) and inducible nitric oxide synthase(iNOS)(P<0.01), inhibited expression of endothelial nitric oxide synthase(eNOS) and cluster of differentiation 206(CD206)(P<0.01), and up-regulated mRNA and protein levels of TLR4, MyD88, NF-κB inhibitor alpha(IκBα), and NF-κB in the vessel wall(P<0.05). Compared with the model group, Buyang Huanwu Decoction and Astragali Radix-Angelicae Sinensis Radix combination lowered the plasma TC and LDL-c levels(P<0.01), alleviated the intimal hyperplasia(P<0.01), and reduced the plasma TNF-α and IL-6 levels(P<0.05). Moreover, the two interventions promoted the expression of eNOS and CD206(P<0.05), inhibited the expression of VCAM-1 and iNOS(P<0.01), and down-regulated the mRNA and protein levels of TLR4, MyD88, IκBα, and NF-κB(P<0.05) in the vessel wall. This study indicated that Buyang Huanwu Decoction and Astragali Radix-Angelicae Sinensis Radix combination could delay the progression of AS, inhibit the polarization of vascular wall macrophages toward M1 type, and attenuate vascular inflammatory response by inhibiting the activation of TLR4/MyD88/NF-κB signaling pathway in the vascular wall. Astragali Radix and Angelicae Sinensis Radix were the main pharmacological substances in Buyang Huanwu Decoction for alleviating the AS vascular inflammatory response.


Sujets)
Souris , Mâle , Animaux , Facteur de transcription NF-kappa B/métabolisme , Récepteur de type Toll-4/métabolisme , Inhibiteur alpha de NF-KappaB/métabolisme , Facteur de nécrose tumorale alpha/métabolisme , Interleukine-6/métabolisme , Facteur de différenciation myéloïde-88/métabolisme , Molécule-1 d'adhérence des cellules vasculaires/métabolisme , Cholestérol LDL , Hyperplasie , Souris de lignée C57BL , Athérosclérose/génétique , Apolipoprotéines E/usage thérapeutique , ARN messager
8.
Chinese Journal of Natural Medicines (English Ed.) ; (6): 321-331, 2022.
Article Dans Anglais | WPRIM | ID: wpr-929264

Résumé

Abelmoschus manihot (L.) Medik. (A. manihot) is a traditional Chinese herbal medicine with a variety of pharmacological properties. It was first recorded in Jiayou Materia Medica dating back to the Song dynasty to eliminate urinary tract irritation by clearing away heat and diuretic effect. However, its pharmacological action on urinary tract infections has not been investigated. The present study aims to evaluate the anti-inflammatory activity of A. manihot on a mouse model of lipopolysaccharide (LPS)-induced cystitis. The results showed that A. manihot decreased white blood cell (WBC) count in urine sediments of the cystitis mice, alleviated bladder congestion, edema, as well as histopathological damage, reduced the expression levels of tumor necrosis factor-α, interleukin-6, and interleukin-1β simultaneously. Moreover, A. manihot administration significantly downregulated the expression levels of TLR4, MYD88, IκBα, p-IκBα, NF-κB p65, and p-NF-κB p65 in LPS-induced cystitis mice. These findings demonstrated the protective effect of A. manihot against LPS-induced cystitis, which is attributed to its anti-inflammatory profile by suppressing TLR4/MYD88/NF-κB pathways. Our results suggest that A. manihot could be a potential candidate for cystitis treatment.


Sujets)
Animaux , Femelle , Humains , Mâle , Souris , Abelmoschus/métabolisme , Anti-inflammatoires/usage thérapeutique , Cystite , Lipopolysaccharides/pharmacologie , Facteur de différenciation myéloïde-88/métabolisme , Inhibiteur alpha de NF-KappaB/métabolisme , Facteur de transcription NF-kappa B/métabolisme , Transduction du signal , Récepteur de type Toll-4/métabolisme
SÉLECTION CITATIONS
Détails de la recherche