Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 1 de 1
Filtre
Ajouter des filtres








Gamme d'année
1.
Electron. j. biotechnol ; 26: 1-6, Mar. 2017. ilus, graf
Article Dans Anglais | LILACS | ID: biblio-1008840

Résumé

Background: Ornithine decarboxylase antizyme 1 (OAZ1) is an important regulator of polyamine synthesis and uptake. Our previous studies indicated that high OAZ1 expression in the ovaries of laying geese is responsible for poor egg production. In the present study, the molecular characterization of goose OAZ1 gene was analyzed, as well as the expression profile in various follicular tissues. Results: An 873-bp cDNA sequence of the OAZ1 gene (Accession No. KC845302) with a +1 frameshift site (+175T) was obtained. The sequence consisted of a 652-bp two overlapping open reading frames (a putative protein with 216 amino acids). The OAZ domain, OAZ signature and OAZ super family domain were prominent conserved regions among species. As the follicle size increased, OAZ1 abundance showed an increasing trend during follicular development, while it decreased during follicular regression. The level of OAZ1 mRNA expression was the lowest in the fifth largest preovulatory follicle, and was 0.65-fold compared to the small white follicle (P b 0.05). OAZ1 mRNA expression in the largest preovulatory and postovulatory follicle was 2.11- and 2.49-fold compared to the small white follicle, respectively (P b 0.05). Conclusions: The goose OAZ1 structure confirms that OAZ1 plays an important role in ornithine decarboxylase-mediated regulation of polyamine homeostasis. Our findings provide an evidence for a potential function of OAZ1 in follicular development, ovulation and regression.


Sujets)
Animaux , Femelle , Protéines/génétique , Protéines/métabolisme , Oies/métabolisme , Follicule ovarique/métabolisme , Ornithine decarboxylase/métabolisme , Polyamines/métabolisme , ARN messager , Clonage moléculaire , Analyse de séquence , ADN complémentaire , Réaction de polymérisation en chaine en temps réel , Follicule ovarique/croissance et développement
SÉLECTION CITATIONS
Détails de la recherche