RÉSUMÉ
Conglutinin is a high molecular-weight lectin originally detected in bovine serum. It belongs to the family of collectins that bind sugar residues in a Ca(2+)-dependent manner and are effector molecules in innate immunity. Conglutinin appears to play an important role in immune defense mechanisms, showing antiviral and antibacterial activities when tested in vivo and in vitro. The present study evaluated the effect of conglutinin on the respiratory bursts in bovine peripheral phagocytes. Using nitroblue tetrazolium and hydrogen peroxide assays, we showed that sugar ligand-bound conglutinin stimulated the production of superoxide and H2O2 in granulocytes whereas the non-sugar-bound form of conglutinin inhibited these processes. These results indicate that both forms of conglutinin are able to interact with surface leukocyte receptors but have opposite effects on phagocytic activity. Our findings suggest that conglutinin bound to sugar residues on microbial surfaces can induce oxygen burst in phagocytes, and thereby mediates the elimination of pathogens and prevents the spread of infection.
Sujet(s)
Animaux , Femelle , Bovins/immunologie , Collectines/pharmacologie , Test ELISA/médecine vétérinaire , Granulocytes/effets des médicaments et des substances chimiques , Peroxyde d'hydrogène/immunologie , Immunité innée/effets des médicaments et des substances chimiques , Phagocytose/immunologie , Espèces réactives de l'oxygène/immunologie , Stimulation du métabolisme oxydatif/effets des médicaments et des substances chimiques , Sérum-globulines/pharmacologie , Statistique non paramétrique , Superoxydes/immunologieRÉSUMÉ
A polysaccharide-rich fraction (ATF) of medicinal mushroom Agaricus brasiliensis was evaluated on the candidacidal activity, H2O2 and nitric oxide (NO) production, and expression of mannose receptors by murine peritoneal macrophages. Mice received three intraperitoneal (i.p.) injections of ATF and after 48 h their peritoneal resident macrophages were assayed against Candida albicans yeast forms. The treatment increased fungicidal activity and it was associated with higher levels of H2O2, whereas NO production was not affected. We also found that the treatment enhances mannose receptor expression by peritoneal macrophages, which are involved in the attachment and phagocytosis of non-opsonized microorganisms. Treatment of animals with ATF was able to enhance the clearance of C. albicans during the first 6 h after the experimental i.p. infection. Our results suggest that this extract can increase host resistance against some infectious agents through the stimulation of microbicidal activity of macrophages.