Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 2 de 2
Filtre
Ajouter des filtres








Gamme d'année
1.
Braz. arch. biol. technol ; 63: e20190229, 2020. tab, graf
Article Dans Anglais | LILACS | ID: biblio-1132245

Résumé

Abstract To develop a biorefinery concept applied in the brewery industry, Chlorella pyrenoidosa and a consortium of associated bacteria were cultivated mixotrophically in a continuous photobioreactor using brewery low-value subproducts as an integrative process. Beer production residues were biochemically characterized to assess the most promising options to be used as a nutrient source for microalgal cultivation. Due to its physical and chemical properties, pre-treated weak wort was used to prepare an organic complex culture medium for microalgal biotransformation. Filtration and nitrogen supplementation were necessary to improve nutrient removal and biomass productivity. Maximal removal of nitrate and phosphate obtained were 90% and 100% respectively. Depending on operation conditions, total carbohydrates depuration ranged from 50 - 80%. The initial concentration of total carbohydrates of the weak wort must be adjusted to 2 - 4g/L to maintain a stable equilibrium between microalgal and bacterial growth. The biochemical composition of produced biomass varied depending on the cultivation conditions as well as on its final use. Upon continuous mixotrophic conditions evaluated in this study, C. pyrenoidosa was composed mainly of carbohydrates and protein.


Sujets)
Animaux , Bière , Phénomènes biochimiques , Biotransformation , Chlorella/croissance et développement , Microalgues/croissance et développement , Glucides , Chlorella/composition chimique , Biomasse , Photobioréacteurs/microbiologie
2.
Braz. j. microbiol ; 46(1): 75-84, 05/2015. tab, graf
Article Dans Anglais | LILACS | ID: lil-748266

Résumé

Nitrogen and phosphorus present in sewage can be used for microalgae growth, possibiliting cost reduction in the production of microalgae at the same time that it decreases the eutrophication potential of the effluent. This research aimed at monitoring the native community of microalgae and coliform bacteria in a secondary effluent from anaerobic municipal sewage treatment. Two treatments (aerated and non-aerated) were performed to grow microalgae under semi-controlled conditions in semi-closed photobioreactors in a greenhouse. The results showed no significant pH and coliforms (total and Escherichia coli) variation between treatments. Nutrient concentrations were reduced supporting microalgae growth up to 107 cells.mL−1 independent of aeration. Exponential growth was obtained from the first day for the non-aerated, but a 5 day lag phase of growth was obtained for the aerated. Chlorella vulgaris was the dominant microalgae (99.9%) in both treatments. In the aerated, 5 algae classes were detected (Chlorophyceae, Cyanophyceae, Chrysophyceae, Bacillariophyceae and Euglenophyceae), with 12 taxa, whereas in the non-aerated, 2 classes were identified (Chlorophyceae and Cyanophyceae), with 5 taxa. We concluded that effluent is viable for microalgae growth, especially Chlorella vulgaris, at the same time that the eutrophication potential and coliforms are decreased, contributing for better quality of the final effluent.


Sujets)
Milieux de culture/composition chimique , Microalgues/croissance et développement , Photobioréacteurs/microbiologie , Eaux d'égout/composition chimique , Aérobiose , Anaérobiose , Enterobacteriaceae/croissance et développement , Microalgues/classification , Dynamique des populations
SÉLECTION CITATIONS
Détails de la recherche