Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 2 de 2
Filtre
Ajouter des filtres








Gamme d'année
1.
Braz. j. med. biol. res ; 51(1): e6536, 2018. tab, graf
Article Dans Anglais | LILACS | ID: biblio-889004

Résumé

Kidney stone disease is a major cause of chronic renal insufficiency. The role of long non-coding RNAs (lncRNAs) in calcium oxalate-induced kidney damage is unclear. Therefore, we aimed to explore the roles of lncRNAs in glyoxylate-exposed and healthy mouse kidneys using microarray technology and bioinformatics analyses. A total 376 mouse lncRNAs were differentially expressed between the two groups. Using BLAST, 15 lncRNA homologs, including AU015836 and CHCHD4P4, were identified in mice and humans. The AU015836 expression in mice exposed to glyoxylate and the CHCHD4P4 expression in human proximal tubular epithelial (HK-2) cells exposed to calcium oxalate monohydrate were analyzed, and both lncRNAs were found to be upregulated in response to calcium oxalate. To further evaluate the effects of CHCHD4P4 on the cell behavior, we constructed stable CHCHD4P4-overexpressing and CHCHD4P4-knockdown HK-2 cells. The results showed that CHCHD4P4 inhibited cell proliferation and promoted the epithelial-mesenchymal transition in kidney damage and fibrosis caused by calcium oxalate crystallization and deposition. The silencing of CHCHD4P4 reduced the kidney damage and fibrosis and may thus be a potential molecular target for the treatment of kidney stones.


Sujets)
Humains , Animaux , Lapins , Calculs rénaux/génétique , Protéines de transport de la membrane mitochondriale/physiologie , Prolifération cellulaire/génétique , Transition épithélio-mésenchymateuse/génétique , ARN long non codant/physiologie , Fibrose , Oxalate de calcium , Calculs rénaux/physiopathologie , Régulation positive , Fractionnement cellulaire , Lignée cellulaire , Technique de Western , Analyse sur microréseau , Prolifération cellulaire/physiologie , Transition épithélio-mésenchymateuse/physiologie , Réaction de polymérisation en chaine en temps réel
2.
Braz. j. med. biol. res ; 40(8): 1011-1024, Aug. 2007. tab, ilus
Article Dans Anglais | LILACS | ID: lil-456798

Résumé

Mitochondria increase their outer and inner membrane permeability to solutes, protons and metabolites in response to a variety of extrinsic and intrinsic signaling events. The maintenance of cellular and intraorganelle ionic homeostasis, particularly for Ca2+, can determine cell survival or death. Mitochondrial death decision is centered on two processes: inner membrane permeabilization, such as that promoted by the mitochondrial permeability transition pore, formed across inner membranes when Ca2+ reaches a critical threshold, and mitochondrial outer membrane permeabilization, in which the pro-apoptotic proteins BID, BAX, and BAK play active roles. Membrane permeabilization leads to the release of apoptogenic proteins: cytochrome c, apoptosis-inducing factor, Smac/Diablo, HtrA2/Omi, and endonuclease G. Cytochrome c initiates the proteolytic activation of caspases, which in turn cleave hundreds of proteins to produce the morphological and biochemical changes of apoptosis. Voltage-dependent anion channel, cyclophilin D, adenine nucleotide translocase, and the pro-apoptotic proteins BID, BAX, and BAK may be part of the molecular composition of membrane pores leading to mitochondrial permeabilization, but this remains a central question to be resolved. Other transporting pores and channels, including the ceramide channel, the mitochondrial apoptosis-induced channel, as well as a non-specific outer membrane rupture may also be potential release pathways for these apoptogenic factors. In this review, we discuss the mechanistic models by which reactive oxygen species and caspases, via structural and conformational changes of membrane lipids and proteins, promote conditions for inner/outer membrane permeabilization, which may be followed by either opening of pores or a rupture of the outer mitochondrial membrane.


Sujets)
Animaux , Apoptose/physiologie , Mitochondries/métabolisme , Protéines de transport de la membrane mitochondriale/métabolisme , Perméabilité des membranes cellulaires , Caspases/métabolisme , Cytochromes c/métabolisme , Mitochondries/physiologie , Protéines de transport de la membrane mitochondriale/physiologie , /métabolisme , Espèces réactives de l'oxygène/métabolisme , Canaux anioniques voltage-dépendants/métabolisme
SÉLECTION CITATIONS
Détails de la recherche